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Abstract

Inferring an individual’s preferences from their observable behavior is a key step in the development
of assistive decision-making technology. Although machine learning models such as neural networks
could in principle be deployed toward this inference, a large amount of data is required to train such
models. Here, we present an approach in which a cognitive model generates simulated data to aug-
ment limited human data. Using these data, we train a neural network to invert the model, making it
possible to infer preferences from behavior. We show how this approach can be used to infer the value
that people assign to food items from their eye movements when choosing between those items. We
demonstrate first that neural networks can infer the latent preferences used by the model to generate
simulated fixations, and second that simulated data can be beneficial in pretraining a network for pre-
dicting human-reported preferences from real fixations. Compared to inferring preferences from choice
alone, this approach confers a slight improvement in predicting preferences and also allows prediction
to take place prior to the choice being made. Overall, our results suggest that using a combination of
neural networks and model-simulated training data is a promising approach for developing technology
that infers human preferences.
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Fig. 1. We propose an approach to developing Al systems that estimate the latent variables that underlie human
behavior. The approach is aimed at satisfying neural networks’ need for massive data by using simulated data
generated from a cognitive model. First, limited human data is used to fit a cognitive model. In the example we
tackle in this paper, human data consists of eye fixations between food items along with self-reported preferences
over those items. The cognitive model is a resource-rational model specifying how individuals select fixations.
Each fixation is modeled as an information-gathering action which decreases uncertainty around the utility of
an item. Second, the cognitive model is then used to simulate massive amounts of simulated data. Third, this
simulated data is used to pretrain neural networks. Finally, the neural networks are additionally fine-tuned with
limited human data.
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Key to building systems that help people make better choices is inferring what people want
from their behavior (Hadfield-Menell, Dragan, Abbeel, & Russell, 2016). How can this infer-
ence take place? Cognitive models, which specify how latent preferences generate behavior,
could in principle be applied to this problem. By using Bayesian inference to invert such a
model, we can infer preferences from behavior. However, cognitive models often fail to cap-
ture idiosyncratic relationships between preferences and behavior, and inverting such models
is computationally burdensome. In contrast, machine learning models such as neural net-
works offer a way to make inference computationally feasible and have greater flexibility
to capture arbitrary relationships. However, training such models requires vast amounts of
behavioral data.

In this work, we propose and test a new solution to the problem of inferring prefer-
ences from behavior, combining the strengths of cognitive models and neural networks. Our
approach is to satisfy the need for massive data to train neural networks by augmenting lim-
ited available real human data with simulated data from a cognitive model (Fig. 1). We apply
this approach to the problem of inferring human preferences over food items from visual fixa-
tions between those items made during the decision-making process. Our results demonstrate
that neural networks are able to learn, from simulated data, to invert a computationally inten-
sive cognitive model for how individuals decide where to fixate while making a decision given
their preferences over items. Additionally, pretraining a network with simulated data and fine-
tuning with limited human data allows prediction of people’s self-reported preferences from
their fixations. This demonstrates a new approach for how cognitive models can be used to
address key limitations of deploying neural networks in human-interaction systems.
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1. Background

Our approach draws upon ideas from machine learning and cognitive modeling. In this
section, we briefly review these ideas.

1.1. Inverse reinforcement learning

In machine learning, the problem of inferring another agent’s preferences has been cast as
inverse reinforcement learning (IRL; Ng & Russell, 2000). IRL specifies a generative model
whereby agents have latent preferences (formalized as a utility function over task states and/or
actions) and make decisions that maximize those preferences. This generative model, relating
preferences to behavior, is inverted to predict the maximum a posteriori (MAP) preferences
that generated the observed behavior. This general framework of inferring preferences by
inverting a decision model has also formed the basis of cognitive models for how individuals
make inferences about others preferences based on their behavior (Baker, Jara-Ettinger, Saxe,
& Tenenbaum, 2017; Jern, Lucas, & Kemp, 2017; Jara-Ettinger, 2019; Lucas et al., 2014).
Cognitive science has also recently provided more sophisticated models of how humans make
decisions, which can provide more accurate models relating preferences to actions to guide
inference (Ho & Griffiths, 2022), and can expand the observables over which inference can
occur to data beyond choices (e.g., response times; Gates, Callaway, Ho, & Griffiths, 2021).

Although IRL defines how preference inference can occur in principle, its practical use has
been limited by the computational challenge of inverting decision models. Finding the MAP
preferences typically involves searching over, and computing the likelihood of, candidate util-
ity functions. For many cognitive process models, computing this likelihood for a single utility
function can be quite computationally intensive. This makes a full search process too compu-
tationally expensive to be deployed in real-time inference settings. As a step toward making
inference faster, recent work has shown that it is possible to implement IRL in neural net-
works, for which inference is fast (Rabinowitz et al., 2018). However, this approach requires
large amounts of labeled training data, which is often unavailable for real-life applications.
Here, we test whether the use of simulated data can alleviate this need for real human data.

1.2. Modeling the relationship between fixations and choice

Rather than trying to infer preferences purely from choices, we consider the problem of
predicting preferences from visual fixations. When individuals make a choice between items,
they tend to move their gaze between potential items in a stereotypic manner. This process has
been studied experimentally in tasks where a participant is presented with a screen displaying
snack items, and is required to select which of them they would prefer to eat at the end of
the experiment (Krajbich, Armel, & Rangel, 2010; Krajbich & Rangel, 2011). Recent work
suggests that when making such decisions, people fixate on the different options in a way
that depends on independently provided ratings of how much they like those items (Callaway,
Rangel, & Griffiths, 2021; Gluth, Kern, Kortmann, & Vitali, 2020; Jang, Sharma, & Drugow-
itsch, 2021). These relationships in principle make it possible to predict individuals’ utility
over items from their fixations. Prior studies have found that it is possible to use the total as
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Fig. 2. We apply the proposed method to a rational model of attention allocation in preferential choice (Callaway
et al., 2021). The top row shows the experimental display, with the currently fixated item (measured with an
eye-tracker) denoted by the eye symbol. The bottom two rows depict the internal state of the cognitive model.
The model maintains Gaussian beliefs about the subjective value of each item. The true subjective values (dashed
lines) are sampled from a Gaussian; this is captured in the decision maker’s initial belief state (first column). At
every time step, ¢, the model “fixates on” one of the items and receives a noisy sample about the true value of
that item (x, marks). It then updates the belief about the value of the fixated item using Bayesian updating (shift
from light to dark curve). The beliefs for the unfixated item are not updated. The process repeats at each time step
until the model decides to make a choice, selecting the item with maximal posterior mean (hand icon). Decisions
about when to make a choice and which item to fixate on at each moment are made by a policy that optimizes the
expected value of the chosen item (yellow line) minus a cost proportional to the amount of time spent sampling.
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well as proportion of time individuals spend fixating on different items to predict, to some
extent, individuals’ preferences for those items (Goyal, Miyapuram, & Labhiri, 2015; Glaholt,
Wu, & Reingold, 2009).

We aim to assess how a cognitive model of how individuals select fixations can be used to
improve this inference. Callaway et al. (2021) presented a resource-rational model for how
individuals select both where to fixate at any point in time, and when to stop fixating and make
a choice in such tasks. According to the model, eye movements reflect optimally selected
information-gathering computations that improve the participant’s beliefs about the utilities
of different snack items (Fig. 2). These computations can lead to a better ultimate decision;
however, they also incur a cognitive cost. By formalizing this process as a sequential decision
problem (specifically, a meta-level Markov decision process), the optimal fixation policy can
be identified. It was found that the sequences of fixations made by the optimal policy closely
corresponded to participant’s observed fixation behavior. We provide a brief summary of the
model in the supplement and refer the reader to Callaway et al. (2021) for further details.

2. Inverting cognitive models using neural networks

Directly inverting cognitive models, such as the model of fixations in choice proposed
by Callaway et al. (2021), is computationally infeasible. We thus propose a new approach:

85U8017 SUOWWOD SAERID 3(gedl|dde auy Ag peusenob 8e sl O ‘88N JO S8|nJ 10} ARIq 1T 8UIUO A8]IM UO (SUOIPUCD-pUe-SW.BH W00 A3 1M AeIq 1 BUt|UO//Sd1Y) SUORIPUOD pue swis | 8y} 89S *[202/TT/90] Uo A%eiqiTauluo A(IM ‘81 Ad STO0Z SBOO/TTTT OT/I0p/Wo A8 |im" ARe.d 1jpuluo//Sdny Wiy pspeoumod ‘TT %202 ‘60.9TSST



E. M. Russek, F. Callaway, T. L. Griffiths / Cognitive Science 48 (2024) S5of 15

using simulated data from this cognitive model to train neural networks to infer an individ-
ual’s preferences given their fixations. Our task involves mapping a sequence (fixations) to a
scalar (utility), so we use three types of neural networks that have been shown to be success-
ful in handling sequence data: long-short-term-memory (LSTM) neural networks (Hochreiter
& Schmidhuber, 1997), gated recurrent unit (GRU) neural networks (Cho, van Merrienboer,
Bahdanau, & Bengio, 2014), and Transformers (Vaswani et al., 2017). LSTMs and GRUs are
both variants of recurrent neural networks (RNNs), which map inputs to a hidden-unit rep-
resentation, which in turn is mapped both to an output estimate and also provided back into
itself as additional input for the next time-step. Through learning, the hidden unit represen-
tation comes to summarize the relevant input history of the sequence up to that time-point,
thus enabling the output to be based not only on current input but also on a history of input.
Whereas for original RNNs (Rumelhart, Smolensky, McClelland, & Hinton, 1986), hidden
units passed their activation to the next time-step through a set of learned weights, GRUs
and LSTMs can learn gates and other structures that control how much past information in a
sequence should be passed along to future time-steps in a contextual manner.

Unlike RNNs, which update an internal representation one step at a time, Transform-
ers process the entire sequence at once, mapping it to an internal representation through a
“self-attention” mechanism (at test time, the model makes predictions sequentially given the
observations before the current predicted element). In self-attention, each item in the input
sequence is represented as a weighted sum of values derived from the entire sequence. These
values are learned, allowing the weighted sum to capture relevant information from both the
current item and other items in the sequence.

The attention weights are determined by an attention score, which measures the relevance
of each item to the current one. This score is computed based on the similarity between the
“query” vector of the current item and the “key” vector of the other items. Both key and query
vectors are learned for each item to facilitate the task-specific relationships between items.
Thus, each item’s output representation is the sum of all items’ value vectors, weighted by the
attention scores between the current item’s query vector and the other items’ key vectors. This
mechanism enables the model to incorporate relevant information from the entire sequence
when representing each item.

We compare these sequence-based models to models using hand-defined sequential infor-
mation (e.g., the sum of fixations up to a given time-point) to estimate utilities. For these
comparisons, we use multi-layer perceptrons (MLPs). MLPs are neural networks that map
features at a single time-point to a learned internal representation, which is then used to esti-
mate the utility of each item.

Our approach builds on work in cognitive science and machine learning that has combined
neural networks with simulated data to either invert complex generative models or to pre-
dict human choices. For fitting cognitive models to behavior, recent work has used neural
networks to approximate likelihood functions that might otherwise be intractable (Fengler,
Govindarajan, Chen, & Frank, 2021). Closer to our application here is work that has trained
neural networks to directly estimate mean parameters or sample from posterior distributions
of complex models, by training networks with simulated data labeled with corresponding
parameters (Gongalves et al., 2020; Ger, Nachmani, Wolf, & Shahar, 2023; Papamakarios
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& Murray, 2016; Radev, Mertens, Voss, Ardizzone, & Kothe, 2022; Yildirim, Belledonne,
Freiwald, & Tenenbaum, 2020). Neural networks used to predict human decisions have been
pretrained with simulated data from cognitive models to make up for limited real human data
(Bourgin, Peterson, Reichman, Griffiths, & Russell, 2019). Finally, neural networks trained to
predict human choices have in turn been used to improve cognitive models through a process
referred to as Scientific Regret Minimization (Agrawal, Peterson, & Griffiths, 2020; Peterson,
Bourgin, Agrawal, Reichman, & Griffiths, 2021; Kuperwajs, Schiitt, & Ma, 2023).

We turn this approach toward the problem of estimating human preferences from eye fix-
ations, training neural networks on simulated fixation and choice data from the model pre-
sented in Callaway et al. (2021). We first test whether we can simply invert the model; that
is, we provide neural networks with a sequence of simulated fixations followed by a choice
and test whether they output correct utilities over the three items. Following this, we vali-
date the approach using real human data on a trinary choice task, reported in Krajbich and
Rangel (2011). We determine whether neural networks can predict people’s reported utilities
given their fixations and choices, how this compares to prediction using choice alone, and also
whether simulated data complements using human data alone in training models on this task.

3. Methods

3.1. Human data

Human data consisted of 2966 trials reported in Krajbich and Rangel (2011) in which
participants made choices over three food items after having the opportunity to engage in a
sequence of fixations between them. Fixations, f,, reflect the item most fixated on in a .1
second bin. Prior to all choices, participants provided liking ratings (utilities) over the full set
of items.

3.2. Simulated data

Simulated data was generated using the model described in Callaway et al. (2021) (Fig. 2).
To simulate a single trial, j, a utility, u;, was drawn for each snack item, s, from P(u), which
was defined by fitting a Gaussian distribution to the full set of item ratings from Krajbich
and Rangel (2011). Given such “true” utilities over items, the model generates a sequence
of fixations, fj,-r, over by items, followed by a choice, cj,, x; = (fj1,, fir> .-+ Cjiy)- At a
high level, each simulated fixation on item s collects a sample from a distribution of item
utilities centered on u s, with Gaussian noise. This sample is used to increase the accuracy of
an estimate of that item’s utility. Optimal fixations reflect the information gathering actions
that balance the benefit of making a choice with a more accurate utility estimates with the
cost of spending additional time. A detailed description of the generative model is presented
in Supplementary section “Optimal fixation model.” Parameters of the model are reported in
Supplementary section ‘“Parameters of optimal fixation model.” Using this model, we simu-
lated 1.5 million trials.
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Fig. 3. Input and target data representation for an example trial. In this example trial, the participant fixated for two
time-steps on item 1, one time-step on item 3, two time-steps on item 2, and then chose item 2. (a) Representation
of example trial’s input sequence and target sequence for training sequence-based models (e.g., Transformers).
Note that to predict each item’s utilities at time-point i, sequence-based models can make use of all time-points in
input sequence up to and including time-point i. (b) Representation of example trial’s input and target sequence
for nonsequential control model with hand-designed features. Input representation of a time-point includes hand-
designed features pertaining to cumulative information about fixations up to and including that time-point. Unlike
sequence-based models, here multi-layer perceptrons have to map a single-time point’s input representation to a
prediction of each item’s utilities. Note that this model uses only fixation, but not choice information. (c) Example
trial’s input and target representation for model trained on choice alone. This model just learns two parameters:
one for the utility of the chosen item and one for the utility of the two unchosen items. Note that although in this
case two unchosen items have different utility values, the choice-only model will assign the same prediction to
these two items.

3.3. Input and target data representation

For each trial, j, consisting of T time-points, we represented that trial’s sequence of fixa-
tions followed by a choice as a length-T" sequence of 6-length vectors, x;, for each time-point,
i =1:T (Fig. 3a, “Input”). For each time-point, i < T, the first three elements of x;; desig-
nated which of the three food items was fixated on at that time-point. The last three elements,
which were active only for the final time-point, 7', designated which of the three items was
chosen on that time-point. Sequence-based models were trained to make a prediction of each
of the three item’s utilities at each time-point, i, in the sequence, using all input data up to
time-point i. The target sequence thus consisted of a length-3 vector where each element,
J = 1: 3 contained the true utility of item j, u;, repeated for each time-point in the sequence
(Fig. 3a, “Target”).

We compared models trained on both fixations and choice to a model trained on choice
alone. For the model trained on choice alone, we trained a model that simply estimated two
parameters reflecting the respective utilities of the chosen item and nonchosen items (Fig. 3c).
We also defined a set of control models based on features that previous work has identified
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as predictive of preferences: the cumulative total and proportion fixation time on each item
(Goyal et al., 2015; Glaholt et al., 2009). For each time-point, we defined a length-9 vector,
with three values indicating the current fixated item (ID), three indicating the total fixation
time on each item (Sum), and three indicating the proportion fixation time on each item (Prop;
Fig. 3b). We then trained MLPs to map these features at each time-point to utility estimates
for each item. Performance of these models is compared in Fig. S1.

3.4. Training procedure and hyperparameter selection

Both simulated and human data were split into training (50%), validation (25%), and testing
(25%) sets. The human testing set did not include any data (even trials; N = 1482) used to
estimate the generative fixation model parameters in Callaway et al. (2021). Of the trials not
used to estimate model parameters (odd trials), half (N = 742) were randomly selected as
the test set, which was held constant across runs. The remaining odd trials (N = 742) were
combined with the even trials to form training and validation sets (2224 total). Within each
run, 1482 trials (67%) were used for training, and 742 trials (33%) were for validation to
select hyperparameters.

We trained Transformers (Vaswani et al., 2017), GRUs (Cho et al., 2014), and LSTMs
(Hochreiter & Schmidhuber, 1997). Detailed descriptions of each model are provided in Sup-
plementary section “Detailed information on model architectures.” Because qualitative results
were the same across architectures, we show only Transformer results in the main text and
present results for all networks in the Supplementary Information (Figs. S2-S4). Control
models used MLPs. All networks were implemented in the Python package, PyTorch (Paszke
etal., 2017). We used the Adam optimizer to identify network parameters that minimized the
mean square error in predicting the set of training sequences. All training used a batch size
of 32. For each task, for all networks, we used a grid search to identify the number of hidden
units (and embedding dimensionality for transformers; out of [8, 16, 32, 62, 128, 256, 512])
and learning rate (out of [.00001, .0001, .001]). For each combination of these hyperparame-
ters, we trained five models, each with different starting weights. Resultant best hyperparam-
eters are reported in Tables S1— S4.

When training on simulated data alone, networks were trained with a single epoch through
1.5 million simulated training trials. Models trained on human data alone and those pretrained
on simulated data followed by fine-tuning on human data both used the same number of
human training examples (N = 1482 trials). When training on human data alone, networks
were trained for up to 1350 epochs through the training dataset of 1482 human trials. When
pretraining on simulated data and then finetuning with human data, networks were trained
with a single epoch through 1.5 million simulated training trials and then were finetuned for
up to 1350 epochs through the training dataset of 1482 human trials. For all approaches, for
each hyperparameter combination, we averaged the five error-versus-training-number curves,
smoothed them with a Gaussian kernel (o = 200 batches), and selected the hyperparameters
and either the number of simulated training trials (for the simulated only case) or number of
epochs through human data (for human only and simulated and human cases) that achieved
minimum mean squared error under that approach and objective.
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Fig. 4. Results of training model on simulated data and testing on held-out simulated data. (a) Predictive accuracy
of neural networks at predicting simulated data utilities, at each time-point prior to a choice being made. Gray
markers denote different control models that use MLPs to map handcrafted features to estimates of utility (Plus:
current item, Triangle: proportion of time spent on each item, Square: cumulative time spent on each item, Circle:
all prior features together). (b) Predictive accuracy after the choice is made. Transformers trained on simulated
fixation and choice data outperform a model which only uses the choice that was made.

For the Transformer networks, we set the number of attention heads to 4 and the number
of layers to 2. All other parameters were set to PyTorch default values. All final results reflect
using these hyperparameters and number of training sequences, averaged over 100 runs, each
with randomized training data ordering and initial weights.

4. Results

4.1. Transformers trained on simulated data can predict latent utilities

We first examined the ability of Transformers trained on simulated fixation and choice data
to predict corresponding latent utilities used to generate that data. An advantage for predicting
utilities from fixations in addition to choices, as opposed to predicting from choices alone, is
that prediction from fixations can be made prior to the choice occurring. Indeed, Transformers
were able to predict latent utilities at time-points prior to choice occurrence, from fixations
alone, with prediction accuracy increasing up until the time of choice occurrence (Fig. 4a).
This prediction accuracy prior to choice outperformed a variety of control models, which
used MLPs to map hand-designed features at a single-time point to prediction of utilities
(see Methods). The best-performing control model was provided the current fixation identity,
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Fig. 5. Testing on human data under different training regimes. Transformers were trained using either simulated
data alone, human data alone, or were pretrained with simulated data and finetuned with human data. Networks
trained with both simulated and human data outperformed networks trained with either alone. (a) Predictive accu-
racy of neural networks at predicting self-reported human item utilities, at each time-point prior to a choice being
made. (b) Predictive accuracy of neural networks at predicting utilities of human data after choice is made, using
both fixation and choice information.

the sum of fixations on each item up to that time-point, and the proportion of fixations up
to that time-point (Fig. S1A). This control model achieved worse prediction accuracy than
the Transformers model (independent sample #-test comparing accuracy correlations aggre-
gated across time-points, #(358) = 19.2, p < .001) demonstrating that the Transformers can
learn nontrivial sequential aspects of the relationship between fixations and preferences in
the simulated data (see Fig. S7 for additional demonstration that networks learn nontrivial
sequential aspects of the relationship). Transformers trained on fixations in addition to choice
also conferred an advantage in predicting preferences after a choice was made compared to
predictions made using choice alone (Fig. 4B; #(358) = 88.1, p < .001). This demonstrates
an ability to learn about relationships between fixations and preferences in simulated data
beyond just predicting which item will be chosen.

4.2. Simulated data complements human data in predicting human utilities

We next sought to examine the ability of Transformers trained on fixation and choice
data to predict human self-reported utilities of items from fixations and choices over those
items. Additionally, we sought to determine whether training networks with simulated data
provided a benefit over training with human data alone. We thus compared the ability of
different Transformers to predict real human self-reported preferences, varying whether the
Transformers were trained using simulated data only, human data only, or pretrained on sim-
ulated data and fine-tuned using human data. Networks pretrained on simulated data and
finetuned with human data outperformed networks trained using either simulated data or
human data alone, both when predicting preferences prior to a choice being made (Fig. 5a;
Simulated and Human vs. Simulated Only: #(358) = 25.6, p < .001; Simulated and Human
vs. Human Only: #(358) = 30.8, p < .001; see Fig. S6 for mean squared error of each
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approach) and also when predicting with knowledge of the choice (Fig. 5b; Simulated and
Human vs. Simulated Only: #(358) = 9.2, p < .001; Simulated and Human vs. Human Only:
t(358) = 45.4, p < .001). This demonstrates that simulated data is beneficial in addition to
human data in predicting real human preferences.

We additionally compared augmenting limited human data with simulated data to an alter-
native way limited human data might be augmented (Supplementary section “Comparison
with noise-based data augmentation”). Specifically, we implemented a form of data augmen-
tation by repeating existing human trials, but modifying each example with noise. We find that
models trained on simulated-augmented data outperform those trained using noise-augmented
data, further demonstrating the utility of pretraining with simulated data (Fig. S5).

To assess the overall accuracy at predicting human preferences from fixations alone, we
compared Transformers trained on human and simulated data to control MLPs trained on
hand-designed features. The best-performing control model for predicting human preferences
from fixations was provided the proportion of fixations up to that time-point (Fig. S1B). We
note that because the Transformer is trained to maximize accuracy across all time-points, it is
outperformed at the final time-point prior to choice by the best control model (note, however,
that neither model knows at what time-point the choice will occur). Aggregated across all
time-points, however, this control model was outperformed by Transformers trained on
simulated and human data (Fig. 6a; #(358) = 37.3, p < .001; see Fig. S8 for comparison
against additional control model). As in the simulated data case, Transformers trained on
simulated and human data, using both information about fixations and which item was
chosen, performed better than a model that only used information about which item was
chosen (Fig. 6b; 1(358) = 113.9, p < .001). This demonstrates that, under this approach,
using fixation data to predict preferences confers a slight benefit beyond simply predicting
which item will be chosen.

5. Conclusion

Cognitive models, which define the relationships between an individual’s latent preferences
and their behavior, offer a tremendous opportunity to infer the hidden variables that guide an
individual’s choice. However, standard approaches to performing probabilistic inference with
such models are computationally prohibitive for practical applications. Here, we have pro-
posed and implemented a new approach for using neural networks to perform inference in
such cognitive models, which can make inference computationally feasible for online appli-
cations. In addition to demonstrating that neural networks can perform inference of latent
preferences in such models, we have also shown that simulating data from such models can
make up for limited human data in training neural networks to infer real human preferences
from behavior.

We found robust results across LSTMs, GRUs, and Transformers, but Transformers
benefited most from pretraining with simulated data. This is consistent with recent work
showing that Transformers especially benefit from massive pretraining datasets (e.g., Rad-
ford, Narasimhan, Salimans, & Sutskever, 2018). However, the similar qualitative effects
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Fig. 6. Comparison of Transformers trained on simulated and human data to control model using hand-crafted
features and also model which uses choice alone. (a) Predictive accuracy of neural networks at predicting self-
reported human item utilities, at each time-point prior to a choice being made. Gray markers denote different
control models that use MLPs to map handcrafted features to estimates of utility (Plus: current item, Triangle:
proportion of time spent on each item, Square: cumulative time spent on each item, Circle: all prior features
together). (b) Predictive accuracy on human data after the choice is made. Transformers trained on simulated and
human fixation and choice data outperform a model which only uses the choice that was made.

across models suggest these are due to the data and any sufficiently capable architecture
would show similar effects.

A key question for future analysis is what type of information neural network models utilize
from the data-generative model. Callaway et al. (2021) demonstrate that the optimal fixation
model captures a rich and subtle relationship between preference and gaze, which has been
validated in human data. It predicts, for example, that the duration of the first fixation to an
item, the order in which it is refixated, and whether it is fixated last should all be informative
of preference. While we do not show the exact features that neural network models utilize
to predictions, we do show in Supplementary analysis (Figs. S7 and S8) that preserving the
order of fixations and time-points is important for model performance, demonstrating that it
picks up on fine-grained relationships between fixations and choice.

Overall, this approach is likely limited by the extent to which cognitive models can capture
idiosyncratic features of the relationship between human preferences and behavior. In future
work, we can improve this approach by identifying and understanding discrepancies between
model generated datasets and real human fixation data. Identifying such discrepancies may
enable the generation of new generative models of fixations. These models may relax the
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strong optimality assumptions of the model we currently use, but may in turn produce fixation
data that is more useful for training neural networks for predicting preferences.

Code availability statement

Analysis code is available at https://github.com/evanrussek/Inverse_Gaze_Neural _
Networks.
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Fig. S1. Performance of nonsequential control models.

Fig. S2. Results of training model on simulated data
and testing on held-out simulated data for GRU and
LSTM networks.

Fig. S3. Testing on human data under different training
regimes for GRU and LSTM networks.

Fig. S4. Results of training model on simulated and
human data and testing on held-out human data for GRU
and Transformer networks.

Fig. S5. Comparison of models trained with alternative
data augmentation approaches to models pretrained on
simulated data.

Fig. S6. Mean squared error for models trained
on human data only and models pretrained on simu-
lated data.

Fig. S7. Comparison of models trained on shuffled fix-
ations up to some time-point with those trained on non-
shuffled fixations.

Fig. S8. Comparison of models trained on shuffled fix-
ations up-to some time-point with those trained on non-
shuffled fixations.

Table S1. Hyperparameters for training on simulated
data and predicting simulated data.

Table S2. Hyperparameters for training on simulated
data and predicting human data.

Table S3. Hyperparameters for training on human data
and testing on human data.

Table S4. Hyperparameters for training on simulated
and human data and testing on human data.
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