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Abstract

The human mind has an unparalleled ability to acquire com-
plex cognitive skills, discover new strategies, and refine its
ways of thinking and decision-making; these phenomena are
collectively known as cognitive plasticity. One important man-
ifestation of cognitive plasticity is learning to make better –
more far-sighted – decisions via planning. A serious obstacle
to studying how people learn how to plan is that cognitive plas-
ticity is even more difficult to observe than cognitive strategies
are. To address this problem, we develop a computational mi-
croscope for measuring cognitive plasticity and validate it on
simulated and empirical data. Our approach employs a process
tracing paradigm recording signatures of human planning and
how they change over time. We then invert a generative model
of the recorded changes to infer the underlying cognitive plas-
ticity. Our computational microscope measures cognitive plas-
ticity significantly more accurately than simpler approaches,
and it correctly detected the effect of an external manipulation
known to promote cognitive plasticity. We illustrate how com-
putational microscopes can be used to gain new insights into
the time course of metacognitive learning and to test theories of
cognitive development and hypotheses about the nature of cog-
nitive plasticity. Future work will leverage our computational
microscope to reverse-engineer the learning mechanisms en-
abling people to acquire complex cognitive skills such as plan-
ning and problem solving.
Keywords: cognitive plasticity; planning; decision-making;
process-tracing; statistical methods

Introduction

One of the most remarkable features of the human mind is
its ability to continuously improve itself. As helpless babies
develop into mature adults, their brains do not only acquire
impressive perceptual and sensory-motor skills and knowl-
edge about the world but they also learn to think, to make
better decisions, to learn, and to monitor and adaptively reg-
ulate themselves. These phenomena are collectively known
as cognitive plasticity. Just like the acquisition of perceptual
skills (Hubel & Wiesel, 1970), the acquisition of cognitive
skills requires specific experiences and practice (van Lehn,
1996; Ericsson, Krampe, & Tesch-Römer, 1993).

Despite initial research on how people acquire cognitive
skills (van Lehn, 1996; Shrager & Siegler, 1998; Krueger,
Lieder, & Griffiths, 2017), the underlying learning mecha-
nisms are still largely unknown. Reverse-engineering how
people learn how to think and how to decide is very chal-
lenging because we can neither observe people’s cognitive
strategies, nor how they change with experience – let alone

the underlying learning mechanisms. Instead, cognitive plas-
ticity has to be inferred from observable changes in behavior.
This is difficult because each observed behavior could have
been generated by many possible cognitive mechanisms. This
problem is pertinent to all areas of cognition. As a first step
towards a more general solution, we develop a computational
microscope for measuring how people learn how to plan.

Our approach combines a recently developed process-
tracing paradigm that renders people’s behavior highly diag-
nostic of their planning strategies with probabilistic models
of planning and learning that constrain the space of poten-
tial cognitive mechanisms and exploit temporal dependencies
among subsequent planning strategies. Critically, our mea-
surement model can be inverted to infer the sequence of peo-
ple’s planning strategies from the clicks they make in the pro-
cess tracing paradigm.

Our computational microscope makes it possible to ob-
serve how people’s planning strategies change from each de-
cision to the next. This sheds new light on the time course
and the nature of metacognitive learning. Future work will
reverse-engineer the learning mechanisms that generate the
cognitive plasticity our computational microscope is bringing
to light.

The plan for this paper is as follows: we start by develop-
ing a computational method for measuring cognitive plastic-
ity. Next, we validate it on synthetic data and human data. We
then illustrate the utility of our computational microscope by
measuring the time course of how people learn how to plan,
characterizing the revealed learning trajectories, and testing
theories of cognitive development and cognitive plasticity. In
closing, we discuss the implications of our findings and di-
rections for future work.

Methods

Process-tracing using the Mouselab-MDP paradigm

Planning, like all cognitive processes, cannot be observed di-
rectly but has to be inferred from observable behavior. This
is generally an ill-posed problem. To address this chal-
lenge, researchers have developed process-tracing methods
that elicit and record behavioral signatures of latent cogni-
tive processes; for instance decision strategies can be traced
by recording the order in which people inspect the payoffs of



Figure 1: Illustration of the Mouselab-MDP paradigm. Re-
wards are revealed by clicking, prior to selecting a path with
the arrow keys. The distribution of rewards underlying each
node at a given step is shown on the right.

different gambles (Payne, Bettman, & Johnson, 1993). While
these behavioral signatures are still indirect measures of cog-
nitive processes, they do provide additional information about
what the underlying cognitive strategy might be.

Here, we employ a process-tracing paradigm that exter-
nalizes people’s beliefs and planning operations as observ-
able states and actions (Callaway, Lieder, Krueger, & Grif-
fiths, 2017; Callaway et al., 2018). Inspired by the Mouselab
paradigm (Payne et al., 1993), the Mouselab-MDP paradigm
uses people’s mouse-clicking as a window into their planning.

The Mouselab-MDP paradigm illustrated in Figure 1
presents a series of route planning problems where each lo-
cation (the gray circles), harbors a gain or loss. These poten-
tial gains and losses are initially occluded, corresponding to a
highly uncertain belief state. The participant can reveal each
location’s reward by clicking on it and paying a fee. This is
similar to looking at a map to plan a road trip. Clicking on
a circle corresponds to thinking about a potential destination,
evaluating how enjoyable it would be to go there, and adjust-
ing one’s assessment of candidate routes accordingly.

Measurement model

To construct a computational microscope for measuring cog-
nitive plasticity, we develop hidden Markov models where
the trial-by-trial sequence of peoples’ cognitive strategies
(S1,S2, · · · ,S31) forms a Markov chain and the observed pro-
cess tracing data constitutes the emissions. These models
require methodological assumptions about i) how cognitive
strategies manifest in process-tracing data, ii) the space of
cognitive mechanisms that can be learned, and iii) the nature
and amount of cognitive plasticity that might occur. The fol-
lowing paragraphs detail our assumptions about each of these
three components in turn.

Observation model. To plan in the Mouselab-MDP
paradigm participants have to gather information by making
a sequence of clicks. Our observation model thus specifies
the probability of of observing a sequence of clicks dt on trial
t if the strategy was St (i.e., P(dt|St)).

To achieve this, we quantify each planning strategy’s
propensity to generate a click c (or stop collecting infor-
mation) in belief state b by a weighted sum of the features
f1(b,c), · · · , f29(b,c). The belief state encodes observed re-
wards.The features describe the click c relative to this infor-
mation (e.g., by the value of the largest reward that can be
collected from the inspected location) and in terms of the ac-
tion it gathers information about (e.g., whether it pertains to
the first, second, or third step)1. The features and weights
jointly determine the strategy’s propensity to make click c in
belief state b according to

P(dt|St) =
|dt|
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where dt,i is the ith click the participant made on trial t (or the
decision to stop clicking and take action), the decision tem-
perature t was set to 0.5 to match the variability of people’s
click sequences, and w

(S) is the weight vector of strategy S.

Space of cognitive mechanisms. We formulated a set of
38 strategies (S )1 to describe the process tracing data from
Lieder (2018): 76.7% of the click sequences were the most
likely instantiation of one of the 38 strategies. The clicks of
the remaining 23.3% of the sequences were, at worst, second
most likely under the best fitting strategy. These strategies
differ in how much information they consider (ranging from
none to all), which information they focus on, and in the order
in which they collect it (e.g., forward planning strategies pri-
oritize immediate outcomes whereas goal-setting strategies
focus on the potential final states).

Building on the observation model in Equation 1, we rep-
resent each strategy by a weight vector w = (w1, · · · ,w29) that
specifies the strategy’s preference for more vs. less planning,
considering immediate vs. long-term consequences, satisfic-
ing vs. maximizing, avoiding losses (cf. Huys et al., 2012),
and other desiderata. These weights span a high-dimensional
continuous space with many intermediate strategies and mix-
tures of strategies. Cognitive plasticity could be measured by
tracking how those weights change over time. But this would
be a very difficult ill-defined inference problem whose solu-
tion would depend on our somewhat arbitrary choice of fea-
tures. As a first approximation, our method therefore simpli-
fies the problem of measuring cognitive plasticity to inferring
a time-series of discrete strategies.

To understand what types of strategies people use, we
grouped our 38 strategies using hierarchical clustering. This
requires measuring the similarity between strategies. Since
the strategies are probabilistic, we defined the distance metric
D(s1,s2) between strategy s1 and s2 as the Jensen-Shannon
divergence (Lin, 1991) between the distributions of click se-

1A detailed description of the features and strategies is available
at https://osf.io/y58d3/?view_only=fa2f89de3aa04d4d87af3d050bb1a64c



quences and belief states induced by strategies s1 and s2 re-
spectively, that is

(2)D(s1,s2) = JS [p(d|s1), p(d|s2)] ,

and approximate it using Monte-Carlo integration.
Applying Ward’s hierarchical clustering method (Ward Jr,

1963) to the resulting distances suggested 11 types of plan-
ning strategies: acting impulsively without any planning,
finding a goal and immediately moving towards it, inspect-
ing both immediate and final outcomes (but no intermediate
ones), overly frugal goal setting strategies, goal setting strate-
gies that plan towards potential goals even when it is waste-
ful, exhaustive backward planning strategies that inspect all
of the states, other far-sighted strategies that inspect all poten-
tial final states, forward-planning strategies similar to depth-
first search, forward-planning strategies similar to best-first
search, strategies similar to breadth-first search, and strate-
gies that focus on the course of action that has received the
most consideration so far.

Prior on strategy sequences. Inferring a strategy from a
single click sequence could be unreliable. Our method there-
fore exploits temporal dependencies between subsequent
strategies to smooth out its inferences. Transitions from one
strategy to the next can be grouped into three types: repeti-
tions, gradual changes, and abrupt changes. While most neu-
roscientific and reinforcement-learning perspectives empha-
size gradual learning (e.g., Hebb, 1949; Mercado III, 2008;
Lieder, Shenhav, Musslick, & Griffiths, 2018), others sug-
gest that animals change their strategy abruptly when they
detect a change in the environment (Gershman, Blei, & Niv,
2010). Symbolic models and stage theories of cognitive de-
velopment also assume abrupt changes (e.g., Piaget, 1971;
Shrager & Siegler, 1998), and it seems plausible that both
types of mechanisms might coexist. To accommodate these
different perspectives, we consider three prior distributions on
participants’ trial-by-trial sequence of cognitive strategies.

The gradual learning prior in Equation 3 assumes that
strategies changes gradually, that is

(3)P(St+1 = s|St ,mgradual) =
exp(� 1

t · D(s,St))

Âs02S exp(� 1
t · D(s0,St))

,

where S is the set of strategies, |S | is the number of strate-
gies, and the temperature parameter t was set to achieve a
50% chance of a strategy change. By contrast, the abrupt

changes prior in Equation 4 assumes that transitions are ei-
ther repetitions or jumps.

(4)
P(St+1 = s|St ,mabrupt) =

pstay · I(St+1 = St) + (1 � pstay) ·
I(s 6= St)

|S |�1
,

Finally, the mixed prior in Equation 5 assumes that both types

of changes coexist.

(5)
P(St+1 = s|St ,mmixed) =

pgradual · P(St+1 = s|St ,mgradual)

+ (1 � pgradual) · P(St+1 = s|St ,mabrupt).

In each of these three cases, we model the probability of the
first strategy as a uniform distribution over the space of deci-
sion strategies (i.e., P(S1) =

1
|S | ).

Together with the observation model and the strategy space
described above each of these priors defines a generative
model of a participant’s process tracing data d; this model
has the following form:

P(d) =
1
|S | ·

T

’
t=2

P(St |St�1,m) ·P(dt|St). (6)

The three measurement models differ in the identity of m 2
{mgradual,mabrupt,mmixed}. Inverting these models gives rise to
a computational method for measuring cognitive plasticity.

Computational microscopy by model inversion

The models above describe how cognitive plasticity manifests
in process-tracing data. To measure cognitive plasticity we
have to reason backwards from the process tracing data to
cognitive changes that generated it. That is, we can build
a computational microscope for measuring cognitive plastic-
ity by inverting these measurement models. To achieve this,
we leverage the Viterbi algorithm (Forney, 1973) to com-
pute maximum a posteriori (MAP) estimates of the hidden se-
quence of planning strategies given the observed process trac-
ing data, the measurement model, and its parameters (pstay for
mabrupt and pgradual and pstay for mmixed). To estimate the model
parameters we perform grid search with a resolution of 0.02
over pstay 2 [0,1] for mabrupt and (pstay, pgradual)2 [0,1]⇥ [0,1]
for mmixed.

Inferring the hidden sequence of cognitive strategies in this
way lets us look at cognitive plasticity through the lens of a
computational microscope.

Validating the computational microscope

Validation on synthetic data

To validate our computational microscope, we apply it to sim-
ulated process tracing data. To avoid bias towards any one
measurement model, we sampled 100 simulated trials from
each of the three measurement models and combined them
into a single data set comprising 300 simulated trials in total.

We then invert the three measurement models on each of
the simulated trials (d) and compared the maximum a pos-
teriori estimate of each strategy sequence (Ŝ) against the
ground truth (S) in terms of the proportion of correctly in-
ferred strategies and the distance between the inferred strate-
gies and the ground truth. To measure the distance between
two sequences of n planning strategies we define D(v,w) as
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i=1 D(vi,wi). For better interpretability, the relative dis-
tance Drel(s1,s2) = D(s1,s2)/D̄ normalizes D(s1,s2) by the aver-
age distance between any strategy and its closest neighbour.

As a baseline, we evaluated the computational method that
inverts the observation model in Equation 1 on each click
sequences independently. This simple approach was suf-
ficient to infer the correct strategy about 81% of the time
(95% confidence interval: [80.2%,81.8%]). The average dis-
tance from the inferred strategy to the true one was only
21% of the average distance from each strategy to its closest
neighbor (Drel(ŝbaseline,s) = 0.215, 95% confidence interval:
[0.20,0.23]). This shows that the simulated click sequences
were highly diagnostic of the strategies that generated them.

We found that exploiting the temporal dependencies
among subsequent strategies by using either of the three mea-
surement models significantly improved the proportion of
correctly inferred strategies to 88.5%, 88.3%, and 88.5% for
mgradual, mabrupt, and mmixed respectively (all p < 0.0001) and
decreased the average distance between the inferred strate-
gies and the ground truth by more than 40% (Drel(ŝgradual,s) =
0.124, Drel(ŝmixed,s) = 0.124, and Drel(ŝabrupt,s) = 0.127, all
p < 0.0001). The minor differences between the accuracies
and distances achieved with the three measurement models
were not statistically significant (c2(2) = 0.36, p = 0.8373
and F(2,897) = 0.06, p = 0.942 respectively). These results
suggest that – under reasonable, theory-agnostic assumptions
about what cognitive plasticity might be like – our computa-
tional microscopes can be expected to produce more accurate
measurements than simpler methods.

Which measurement model is most suitable depends on
whether the measured changes are mostly gradual, mostly
abrupt, or a combination of both. This may vary across tasks
and participants. We therefore invert all three measurement
models on each participant’s data and select the most appro-
priate measurement model for each participant according to
the Akaike Information Criterion (Akaike, 1974). We then
interpret the inferences obtained from inverting the selected
model as the measurement of our computational microscope.

Validation on empirical data

To validate our computational microscope on empirical data,
we applied it to the Mouselab-MDP process-tracing data from
Experiments 1–3 by Lieder (2018) where 176 participants
solved 31 different 3-step planning problems of the form
shown in Figure 1. Concretely, we asked if our computational
microscope can detect the effect of an experimental manipu-
lation expected to promote cognitive plasticity, namely the
feedback participants in the second condition of Experiment
1 received on the (sub)optimality of their chosen actions. This
feedback stated whether the chosen move was optimal and in-
cluded a delay penalty whose duration was proportional to the
difference between the expected returns of the chosen move
versus the optimal one.

Our computational microscope successfully detected this
manipulation. As shown in Figure 2, the inferred learning-
induced changes were significantly larger in the feedback

Figure 2: Feedback accelerates cognitive plasticity. This fig-
ure shows that feedback increased the amount of cognitive
plasticity at the beginning of learning.

condition than in the control condition in the first 15 tri-
als and in trials 21–25 (p  0.012 for each 5-trial bin) and
nearly significant in trials 15–20 (p = 0.08) and trials 25–30
(p = 0.06). Furthermore, Figure 2 also shows that cognitive
plasticity slowed down over time as participants adapted to
experiment’s stationary decision environment.

Next, we performed c2-tests to determine which strategy
transitions were facilitated versus suppressed by the provision
of action feedback. We found that action feedback selectively
increased the probability of eight performance-increasing
strategy changes (and only two performance decreasing
ones) while decreasing the probability of five performance-
decreasing transitions, five self-transitions, and only one
performance-increasing transition.

Our method’s ability to detect the plasticity-enhancing ef-
fects of feedback suggests that its inferences provide a valid
measure of cognitive plasticity.

Shedding light on cognitive plasticity

Having validated our computational microscope on both sim-
ulated and empirical data, we now leverage it to measure how
people learn how to plan by applying it to the process trac-
ing data from the control conditions of Experiment 1 and the
training phases of the control conditions of Experiments 2
and 3 from Lieder (2018). In the following, we illustrate
how our computational microscope can be used to i) mea-
sure how people’s propensity to use different cognitive strate-
gies evolves over time, ii) test theories of cognitive develop-
ment and cognitive plasticity, and iii) characterize people’s
metacognitive learning trajectories.

Temporal evolution of strategy frequencies. As shown
in Figure 3, we found that the most common initial strat-
egy was to act impulsively without any planning (No Plan-

ning). The prevalence of this strategy decreased gradually



Figure 3: Time course of strategy usage frequencies of the
five most common strategies.

over time from about 34% to about 26% (c2(1) = 7.95, p =
0.0048)2. Conversely, the frequency of the near-optimal Goal

Setting strategy increased from about 4% to 30% (c2(1) =
148.85, p < 0.0001). The frequencies of the two maladaptive
strategies that decide based on immediate rewards (Myopic

Satisficing and Myopic Impulsive) dropped from about 11%
and 4% respectively to about 5% (c2(1) = 11.74, p= 0.0006)
and 0.6% (c2(1) = 11.62, p = 0.0006) respectively, whereas
the frequency of the strategy One Final Outcome that prior-
itizes long-term consequences increased from about 1% to
about 6% (c2(1) = 20.22, p < 0.0001). Jointly these strate-
gies accounted for about 53%–72% of our participants plan-
ning in the different trials of our experiment.

Testing theories of cognitive development. Prominent
theories of cognitive development disagree about whether it
proceeds in discrete stages (Piaget, 1971) with abrupt transi-
tions or continuous gradual change (Siegler, 1996).

Our computational microscope suggested that cognitive
plasticity includes both gradual and abrupt strategy changes.
We observed that the data from 63.0%± 4.9% of our partic-
ipants was best captured by the abrupt model, while the data
from 29.8%±4.6% of the participants were best captured by
the gradual model, and the data from 7.2%±2.6% were best
captured by the mixed model. A more fine-grained analysis of
the individual inferred transitions revealed that the majority
of strategy changes was gradual (i.e., 59.1%, c2(1) = 56.8,
p < 0.0001) but there was also a non-negligible percentage
of abrupt changes (i.e., 40.9%). In total those different types
of strategy changes constituted 22.8% of all transitions; that
is 77.2% of the inferred transitions were strategy repetitions.

Siegler’s overlapping waves theory (Siegler, 1996) asserts
that multiple cognitive strategies are being used in parallel
at each time during cognitive development. It further asserts

2The c2-tests in this paragraph compare the average frequency in
the first five trials against the average frequency in the last five trials.

that the relative frequencies of these strategies shift towards
increasingly more adaptive strategies and that there are inter-
mediary strategies whose frequency waxes and vanes. To test
the first prediction of the overlapping waves theory (Siegler,
1996), we performed c2-tests on the strategies’ frequencies
in all bins of 5 consecutive trials. In support of the hypoth-
esis that multiple different strategies are used at each point
in time throughout the learning process we found that the av-
erage number of strategies used by significantly more than
5% of the participants in any given trial was 2.16 (95% con-
fidence interval: [2.02,2.30]). Consistent with the prediction
that high-performing strategies become more prevalent over
time whereas low-performing strategies become less preva-
lent over time we found a significant rank correlation be-
tween each strategies’ average performance and the change
in their frequency from the first trial to the last trial (Spear-
man’s r(37) = 0.39, p = 0.0154). We did not find any ev-
idence for intermediary strategies whose frequency initially
increases and later decreases again. That is, there was no
strategy whose frequency was higher in the middle two time
bins than in the both the first two time bins and the last two
time bins. But overall the measurements we obtained with
our computational microscope are more consistent with the
overlapping waves theory than with earlier stage theories of
cognitive development.

Learning trajectories. To identify the most common learn-
ing trajectories, we categorized each inferred strategy as be-
longing to one of the 11 types of strategies described ear-
lier. We then extracted the order in which different strat-
egy types appeared in the inferred sequences. Using this
analysis we found there were almost as many unique learn-
ing trajectories as there were learners: The 114 participants
who changed their strategy at least once displayed 98 unique
learning trajectories; that is 86.0% of the learning trajectories
were unique and the remaining trajectories were exhibited by
only 2–4 learners each. Zooming in on the 49 participants
who learned the near optimal goal setting strategy, we found
that they reached the near optimal goal setting strategy via 38
unique learning trajectories. Consistent with the overlapping
waves theory we found that 83.8% of these learning trajecto-
ries included at least one intermediary strategy between the
initial strategy and the final strategy. Most importantly, our
analysis revealed three dominant gateways to optimal plan-
ning: 35% of the penultimate strategies inspected all poten-
tial final states – whereas the optimal strategy stops searching
for better final states once it encounters the best possible out-
come – and sometimes planned backwards from undesirable
states; 27% of the penultimate strategies inspected the poten-
tial final states more like the optimal strategy but additionally
and wastefully inspected paths towards undesirable final out-
comes, and 21% of the penultimate strategies inspected both
immediate and final outcomes while ignoring the intermedi-
ate states. This suggests that participants discovered the opti-
mal goal setting strategy via intermediate strategies that per-



form gratuitous planning. Furthermore, we found that about
42% of participants who succeeded to learn a near-optimal
goal setting strategy started with strategies that inspect both
immediate and final outcomes without looking at intermedi-
ate ones. In addition to the 114 participants who changed
their initial strategy, 62 participants (35%) never changed
their strategy including 20% who always acted impulsively
without any planning and 9% who always used frugal goal
setting strategies.

More than reinforcement learning? To test the hypoth-
esis that cognitive plasticity is partly driven by metacogni-
tive reinforcement learning (Krueger et al., 2017; Lieder et
al., 2018), we tested the effect of the absolute value of the
reward prediction error in trial t (defined as reward on trial
t minus the average of the rewards on trials 1 to t � 1) on
the subsequent change in the participant’s planning strategy
(Drel(Ŝt , Ŝt+1)) using an ANOVA controlling for the effect of
the trial number and individual differences between partici-
pants. Surprisingly, the main effect of the reward prediction
was not statistically significant (F(1,2343) = 1.13, p = 0.29)
but its interaction with the participant ID (F(175,2342) =
1.42, p = 0.0003) was. To test the effect of prediction errors
independently of our assumptions about the distance between
strategies, we compared the average absolute values of reward
prediction errors before strategy changes versus strategy rep-
etitions while controlling for individual differences; the dif-
ference was not statistically significant (F(1,2405) = 3.07,
p = 0.08).

Discussion

We have successfully validated our method on both synthetic
and human data. The results suggest that our computational
microscope can measure cognitive plasticity in terms of the
temporal evolution of people’s cognitive strategies.

Our findings suggest that this method has great potential
for uncovering the mechanisms of cognitive plasticity and
how they are impacted by the learning environment, individ-
ual differences, time pressure, motivation, and interventions
– including feedback, instructions, and reflection prompts.

We are optimistic that computational microscopes will be-
come useful tools for reverse-engineering the learning mech-
anisms that enable people to acquire complex cognitive skills
and shape the way we think and decide. To make this pos-
sible, we will extend the proposed measurement model to
continuous strategy spaces and learning at the timescale of
individual cognitive operations.

The tentative conclusions we obtained with our first proto-
type of a computational microscope for measuring cognitive
plasticity should be taken with a grain of salt because more
psychologically plausible distance metrics and more realistic
strategy representations could lead to different conclusions
about the nature of cognitive plasticity. In this first step, we
determined the similarity between strategies based on their
behavior. But two strategies that look very different could

result from similar mechanisms. Future work will identify a
low-dimensional continuous strategy space by decomposing
each strategy into its Pavlovian, habitual, and model-based
components (van der Meer, Kurth-Nelson, & Redish, 2012).
This more realistic representation will allows us to measure
the similarity between strategies by comparing the underlying
neurocomputational mechanisms.

The approach developed in this paper makes it possi-
ble to more directly observe the previously hidden phe-
nomenon of cognitive plasticity in all of its facets – rang-
ing from skill acquisition, learning to think differently, cogni-
tive development, reflective learning, cognitive decline, self-
improvement, cognitive development, changes in cognitive
dispositions, and the onset, progression, and recovery from
psychiatric symptoms and mental disorders. Last but not
least, using this method to reverse-engineer people’s ability to
discover and continuously refine their own algorithms could
enable substantial advances towards self-improving (general)
artificial intelligence.
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