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Perfectly rational decision making is almost always out of reach for people because their computational
resources are limited. Instead, people may rely on computationally frugal heuristics that usually yield
good outcomes. Although previous research has identified many such heuristics, discovering good
heuristics and predicting when they will be used remains challenging. Here, we present a theoretical
framework that allows us to use methods from machine learning to automatically derive the best heuristic
to use in any given situation by considering how to make the best use of limited cognitive resources. To
demonstrate the generalizability and accuracy of our method, we compare the heuristics it discovers
against those used by people across a wide range of multi-attribute risky choice environments in a
behavioral experiment that is an order of magnitude larger than any previous experiments of its type. Our
method rediscovered known heuristics, identifying them as rational strategies for specific environments,
and discovered novel heuristics that had been previously overlooked. Our results show that people adapt
their decision strategies to the structure of the environment and generally make good use of their limited
cognitive resources, although their strategy choices do not always fully exploit the structure of the
environment.

Keywords: decision making, heuristics, risky choice, bounded rationality, strategy discovery

We make thousands of decisions every day. Collectively, these
decisions determine our personal lives and the success of companies
and organizations, and they also shape the economy and society
as a whole. However, making good decisions is a challenging
computational problem for people and artificial intelligences alike
(Bossaerts et al., 2019; Bossaerts & Murawski, 2017; Gershman et
al., 2015; Kwisthout et al., 2011; Nowozin, 2014; Papadimitriou &
Tsitsiklis, 1986). According to classic economic theory, people
should choose their actions to maximize the expected utility of the
consequences (Morgenstern &VonNeumann, 1953; Savage, 1951),
but computing those expected utilities for real-world problems

is a substantial task and humans face significant limitations in
computational resources and time (Simon, 1972). As a result, most
real-world decisions are too complex for people to apply those
economic principles correctly. Instead, people have to rely on
heuristics to simplify decision making (Gardner, 2019; Gigerenzer
& Goldstein, 1999; Gilovich et al., 2002; Kahneman et al., 1982;
Maule & Hodgkinson, 2002).

Despite the ubiquity of heuristics (and resulting biases) in
decision making, identifying which heuristics people use and when
they use them can be a challenge. Psychologists identify heuristics
by thinking about the structure of decision environments and
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observing human behavior, but this process of discovery is slow
and requires both luck and ingenuity. This makes discovering good
heuristics a critical bottleneck to understanding and improving
human decision making. Furthermore, while many specific heuristics
have been identified, there is no general method that could be used to
predict which heuristics will be used in novel situations.
In this article, we address these problems by proposing a

theoretical framework that can be used to automatically derive
optimal heuristics. This approach relies on the idea that people’s
heuristics may arise as a rational adaptation to the structure of the
environment and the cognitive constraints of limited time and
computational resources (Frank, 2013; Griffiths et al., 2012, 2015;
Lewis et al., 2014; Lieder & Griffiths, 2020; Simon, 1956, 1972;
Zednik & Jäkel, 2016)—a normative benchmark that we refer to as
“resource-rationality” (Griffiths et al., 2015; Lieder & Griffiths,
2020). Resource-rationality is achieved through an optimal trade-off
between decision quality and computational cost. This trade-off
also arises in machines and can be formalized using ideas from
the artificial intelligence literature (Russell & Wefald, 1991b).
Specifically, heuristic decision making can itself be understood as a
sequential decision problem (Griffiths et al., 2019). At each step,
people make a decision about whether to collect more information
about their options through deliberation or simply to stop thinking
and act. Whereas classic rationality applies to the utility of decisions
in the external world, and research on heuristics and biases
highlights internal cognitive limitations, the framework we propose
here bridges these two approaches by viewing rationality as a
property of this internal sequential decision process, rather than of
the resulting external decisions. We leverage recent advances in
machine learning to solve this sequential decision problem, allowing
us to automatically derive optimal heuristics for any decision
environment.
To demonstrate the accuracy and generalizability of our

approach, we applied it to multi-alternative, multi-attribute decision
making (Zanakis et al., 1998). The heuristics people use to make
these kinds of decisions have been extensively studied in the
Mouselab paradigm for multi-alternative risky choice where
participants choose between multiple gambles whose payoffs
depend on a random outcome (Payne et al., 1988, Figure 1).
Participants are shown the probability (prob.) of each outcome and a
payoff matrix with one column for each gamble and one row for
each outcome. The entry in column g and row o indicates how much
money gamble g pays if the outcome o occurs. Critically, all payoffs
are initially occluded, and the player can reveal outcomes by
clicking on them one by one. Thus, the sequence of clicks a player
makes traces their decision strategies. To operationalize the
cognitive cost associated with evaluating possible outcomes,
participants are charged a fixed fee for every click; thus, to
maximize earnings, the player must employ a decision strategy that
achieves an optimal trade-off between the cost of information
gathering versus the value of information (VOI). Importantly, the
Mouselab paradigm thereby allows us to externalize cognitive costs
of computation as clicks.
We applied our heuristic-discovery method across a large range of

multi-attribute decision-making problems and tested its predictions in
an experiment that is an order of magnitude larger than the largest
previous study in this setting. Our method automatically rediscovered
the classic take-the-best (TTB; Gigerenzer & Goldstein, 1999)
heuristic and an information search strategy similar to the weighted-

additive (WADD) heuristic (Dawes & Corrigan, 1974; Payne et al.,
1988) as resource-rational strategies in specific situations, validating
the approach. In addition, our method discovered novel strategies that
had been previously overlooked. We collected data from over 2,300
participants, systematically varying the parameters of the decision-
making environment. This allowed us to parametrically evaluate
human heuristics using the normative standard of resource-
rationality. If human heuristics are selected in accordance with this
normative standard, people should adapt their strategies to the
decision environment.

Our approach correctly predicted which strategies people use and
under which environmental conditions they use them more versus
less often. Comparing people’s strategy choices against the
normative standard of resource-rationality indicated that people
use resource-rational decision-making strategies and adaptively
select which strategy to use based on the structure of the
environment. However, they select and execute these strategies
imperfectly, thus falling short of perfect resource-rational decision
making. In a follow-up experiment, we found that people continued
to deviate from resource-rational decision making even when the
task was modified such that the assumptions of the resource-rational
model were met. Our findings suggest that our automatic strategy
discovery method is a promising approach for uncovering people’s
cognitive strategies and assessing human rationality using a more
realistic normative standard.

Background

Before we introduce our approach, we briefly summarize
previous work on identifying the heuristics that people use in
multi-alternative risky choice and the normative frameworks that
have been used to account for these choices.
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Figure 1
Illustration of the Mouselab Paradigm (Payne et al., 1988)

Note. The task is to choose one of six gambles, each of which results in one
of four probabilistic outcomes; before gambling, participants can gather
information about the value of each cell by clicking on it. The Mouselab
paradigm externalizes computations by clicks, belief states by revealed
information, and the cost of each computation by the fee charged for the
corresponding click. This example shows a sequence of clicks generated by
the satisficing–take-the-best strategy, which was discovered through our
approach. prob. = probability. See the online article for the color version of
this figure.
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Manually Identified Heuristics

Previous work has manually identified a number of heuristics
employed in multi-attribute risky choice (Gigerenzer & Goldstein,
1996; Katsikopoulos, 2011; Payne, 1976a; Simon, 1956; Thorngate,
1980). Early research focused on additive models in which linear
combinations of payoffs are used to make a decision (Dawes &
Corrigan, 1974; Einhorn & Hogarth, 1975). For example, classical
expected utility theory is implemented by the WADD model, in
which payoffs are weighted by their probabilities.1 Another widely
recognized heuristic is the lexicographic rule (Svenson, 1979;
Tversky, 1969) or “TTB” (Gigerenzer & Goldstein, 1999), which
focuses on a single diagnostic attribute. Satisficing, on the other
hand, focuses on one alternative at a time, selecting it only if all of its
attributes are above a certain cutoff value (Simon, 1956).
Like researchers before them, Payne et al. (1988) studied the trade-

off between cognitive effort and decision accuracy afforded by
heuristics. They operationalized effort by decomposing heuristics into
units of “elementary information processes” (EIPs; Johnson & Payne,
1985). These basic steps of cognitive processing include operations
like “read,” “compare,” “add,” “product,” “move,” and “choose,” and
this framework has its origins in the view of human reasoners as
symbolic information processing systems (Newell & Simon, 1972).
Assuming every operation requires equal effort, Payne et al. (1988)
reported simulation results showing the effort–accuracy trade-off of
nine different heuristics in the Mouselab task. These heuristics
included the three aforementioned, two others (“elimination by
aspects”; Tversky, 1972 and “majority confirming dimensions”;
Russo & Dosher, 1983), and four hybrids or modified versions of the
previous five. They showed that certain heuristics require substantially
less effort but that, depending on the environment of the Mouselab
task, may incur only a minimal reduction in accuracy. For example,
when one attribute is much more likely than all the others, TTB
performs nearly as well as the much more costly WADD strategy.
Payne et al. (1988) noted general characteristics in the patterns of

information processing associated with heuristics. These include the
amount of information gathered and the variance in gathering
information across attributes versus across alternatives. Rather than
measure heuristics directly, they measured these behavioral features
in human participants, which we discuss in detail later. They found
that people adjust their information processing to the environment,
such that less effortful patterns are used when the reduction in
accuracy is relatively small and when under time constraints (since
less effortful heuristics are simpler and faster).
While appreciating the effort–accuracy trade-off, Payne et al.

(1988) assumed that expected value maximization is the normative
standard and that heuristics arise as a necessary but suboptimal
adaptation to environmental variables. That is, certain heuristics are
less bad in some environments, but a limitation is all the same. Their
simulation results cannot predict which heuristic ought to be used in
which environment because EIPs do not specify how much effort
each operation costs. Rather, the subjective cost of even a single EIP
is ultimately a suboptimal cognitive bias. In our work, rather than
assume EIPs that have a priori unquantifiable cost, we impose a cost
of gathering information directly. This allows us to compute
precisely the optimal trade-off between effort (operationalized as
click costs) and decision accuracy. In doing so, we provide a
normative account of heuristics based on the rational use of costly
cognitive operations. In this framework, heuristics can be derived

automatically by optimizing the cost–accuracy trade-off, rather than
relying on subjective insight to propose or search for strategies.

Normative Accounts of Heuristics

Like Payne et al. (1988), other previous work has also
characterized the environments in which hand-crafted heuristics
perform best, showing that people select among these heuristics
accordingly (Baucells et al., 2008; Dieckmann & Rieskamp, 2007;
Gigerenzer & Brighton, 2009; Goldstein & Gigerenzer, 2002;
Katsikopoulos, 2011; Katsikopoulos & Martignon, 2006; Martignon
& Hoffrage, 1999, 2002; Şimşek, 2013). While challenging classic
rationality, this work generally views heuristics as adaptive to the
environment rather than adaptive to inherent constraints on the
decision-making process itself.

Researchers have previously considered the ideal observer
perspective for rational decision-makers (Fishburn, 1989; Geisler,
1989; Howard, 1968), but such an approach was recognized as
infeasible (Bell et al., 1988; Kimball, 1958; Simon, 1990; Tversky &
Kahneman, 1974). An alternative view is to emphasize the limitations
of the decision-maker and the fact that heuristics are computationally
cheaper (Payne et al., 1988, 1993) and may achieve some trade-off
between accuracy and effort (Beach & Mitchell, 1978; Shah &
Oppenheimer, 2008) or optimization under constraints due to
information costs (Anderson, 1991; Stigler, 1961), although these
perspectives typically view heuristics as inferior to rational decisions
(Keeney et al., 1993; Tversky, 1972). The discovery that simpler
regression models may outperform more complex ones (Dawes,
1979; Dawes & Corrigan, 1974; Einhorn & Hogarth, 1975; Schmidt,
1971), combined with observations that heuristics often work quite
well in many real-world decision environments (Chater et al., 2003;
Czerlinski et al., 1999; DeMiguel et al., 2009; Gigerenzer, 2008; Lee
et al., 2002; Lichtenberg & Şimşek, 2017; Wübben & Wangenheim,
2008)—the so-called “less-is-more” effect—challenged the classical
normative view of rationality. This led to the idea of ecological
rationality (Gigerenzer & Gaissmaier, 2011; Gigerenzer & Todd,
1999; Payne et al., 1993) and attempts to formally account for the
effectiveness of heuristics in terms of a range of factors: the structure
of the decision environment (Baucells et al., 2008; Bhatia & Stewart,
2018; Dieckmann & Rieskamp, 2007; Katsikopoulos, 2011;
Katsikopoulos & Martignon, 2006; Martignon & Hoffrage, 1999,
2002; Şimşek, 2013), trading-off utility and search costs (Analytis et
al., 2014) or accuracy and time (Hawkins & Heathcote, 2021;
Jarvstad et al., 2012; Rae et al., 2014), bounded evidence
accumulation (Brown et al., 2009; Lee & Cummins, 2004), reducing
model parameters to balance the bias–variance trade-off (Gigerenzer
& Brighton, 2009; Holte, 1993) or limited data (Hogarth & Karelaia,
2005, 2006, 2007; Şimşek & Buckmann, 2015), and using strong
priors (Parpart et al., 2018). More recently, a resource-rational
analysis of cognition has been applied to view heuristics as making
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1 The traditional notion of expected value maximization under risky
choice can be traced all the way to the foundations of probability theory
(Huygens, 1657, 1714), while the idea that people instead use subjective
utility began with Bernoulli (1738, 1954). Modern research using weighted
additive models of utility applied to risky decision making began with Von
Neumann andMorgenstern (1944), while Payne et al. (1988) were the first to
apply this benchmark to the Mouselab task. For a discussion of the origins of
early research on models of risky decision making, see Edwards (1954).

IDENTIFYING RESOURCE-RATIONAL HEURISTICS 907



rational use of limited computational resources (Bhui et al., 2021;
Binz et al., 2022; Lieder & Griffiths, 2017; Lieder & Griffiths, 2020).
Our approach extends these previous results by automatically

discovering the best-performing heuristics by explicitly optimizing
over an immense, combinatorial strategy space defined by a set of
basic cognitive operations, reminiscent of EIPs (Johnson & Payne,
1985). Expressing heuristics as a rational trade-off between
expected payoff and cognitive cost makes it possible to use
methods from machine learning to find a near-optimal policy for
selecting which costly cognitive operation to perform next given the
result of previous operations. In addition to uncovering new
heuristics, this approach can establish a normative basis for
heuristics that people are already known to use. Any heuristic that
our method identifies is likely to strike a near-optimal trade-off
between cognitive cost and decision quality.

Automatically Deriving Resource-Rational Heuristics

Our approach rests on the key insight that the process of making a
decision can itself be described as a sequential decision problem. At
each step of this problem, the agent chooses whether to perform some
computation or to instead take the results of previous computations
and act. Stated in these terms, the problem of making a decision can be
recognized as a Markov decision process (MDP; see Figure 2). A
decision-making strategy (a heuristic) is then a policy for that MDP,
that is, a function that selects which computation to execute next given
the results of previous computations. In the artificial intelligence
literature, this problem of choosing a sequence of computations to
perform has been formalized as a “meta-level”MDP (Hay et al., 2012)
where the name acknowledges that we are deciding how to decide.
The definition of a meta-level MDP parallels that of a

conventional, or “object-level” (Russell & Wefald, 1991a), MDP.
In an object-level MDP, the environment is represented using states
that the agent can occupy and actions that the agent can execute,
which lead to rewards and transitions to new states. The agent’s
objective is to select actions that maximize cumulative reward
(Sutton & Barto, 2018). The reinforcement learning literature relies
on the MDP framework as a formal representation of the external
environment and a source of hypotheses about how to solve the

challenges it poses. This has led to considerable recent advances in
artificial intelligence (e.g., Berner et al., 2019; Hessel et al., 2018;
Mnih et al., 2015; Silver et al., 2017) and success in describing
human (e.g., Cohen & Ranganath, 2007; Shteingart & Loewenstein,
2014) and animal (e.g., Rescorla, 1972; Sutton & Barto, 1990)
behavior and brain function (e.g., Botvinick et al., 2009; Dayan &
Daw, 2008; Glimcher, 2011; Ludvig et al., 2011; Niv, 2009; Schultz
et al., 1997).

A meta-level MDP uses the same formal framework, but instead
of capturing the external environment in which decisions take place,
it represents the internal environment of the cognitive processes that
underlie those decisions. As shown in Figure 2, internal states are
referred to as beliefs, b, and internal actions are described as
computations, c, that can be used to update beliefs. Because brains
and machines have limited computational resources, computations
come with a cost, rmeta. In addition to making internal computations,
an agent can execute a special internal action, ⊥, that terminates
deliberation and takes the action in the external world with the
highest expected value according to their current beliefs. The agent
then receives a reward from the external world (blue nodes in
Figure 2). To identify the best policy for themeta-levelMDP, we use
methods from reinforcement learning that are used to solve MDPs.
This provides a normative account of how a decision-maker ought to
navigate the internal world of their mind. In this way, a meta-level
MDP can be used to derive cognitive strategies for decision making.

The meta-level MDP has its origins in the artificial intelligence
literature on rational metareasoning (Hay et al., 2012; Russell &
Wefald, 1991b), which is concerned with building machines that
best use their limited computational resources. Recently, however,
the approach has been applied to understand how humans efficiently
use their cognitive resources. In particular, meta-level MDPs have
been used to build resource-rational models of simple (non-multi-
attribute) decision making (Callaway, Rangel, & Griffiths, 2021) as
well as planning (Callaway, Lieder, et al., 2022; Callaway, van
Opheusden, et al., 2021). Here, we apply this approach to compute
resource-rational heuristics for multi-attribute risky choice and
compare them to the strategies that people use.

Our approach builds on previous work modeling heuristics in
decision making in terms of EIPs (detailed above; Bettman et al.,
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Figure 2
Schematic Illustration of the Meta-Level Markov Decision Process Framework Applied to the Mouselab Task

Note. At the beginning of each trial, when all cell values are hidden, the agent’s initial belief state, b0, is represented as
Gaussian distribution for each of the six gambles. Each time the agent makes a computation, c, by clicking on a cell to gather
information, it incurs a computational cost, rmeta, and updates its belief distribution for the observed column. When the agent is
finished gathering information, it can choose to terminate deliberation,⊥, by selecting a gamble, at which point an action is taken
in the external world and it receives a reward (blue nodes). See the online article for the color version of this figure.
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1990; Johnson & Payne, 1985; Payne et al., 1988). Like this
previous work, wemodel the decision-making process as a sequence
of simpler cognitive operations. However, unlike previous work, we
do not manually specify how the operations should be sequenced;
instead, we derive optimal sequences automatically. That is, we pose
the sequencing problem as a meta-level MDP and identify a near-
optimal policy that chooses which operation to perform next given
the outcome of previous operations. This allows us to exhaustively
explore the space of heuristics, identifying those that are adaptive in
specific circumstances, rather than relying on human creativity to
generate hypotheses about the heuristics people might follow.
Solving complex meta-level MDPs is a challenging computa-

tional problem whose complexity exceeds the capacities of standard
methods from reinforcement learning and dynamic programming.
To overcome this challenge, we recently developed a new
reinforcement learning algorithm that is specifically tailored to
solving meta-level MDPs called Bayesian meta-level policy search
(BMPS; Callaway et al., 2018). Here, we use this technical advance
to discover rational heuristics for risky choice. The resulting
approach is as follows: First, we model the distribution of decision
problems posed by the environment and the cognitive capacities the
decision-maker has available to solve those problems as a meta-level
MDP. Next, we apply BMPS to solve the meta-level MDP. Last, we
characterize this solution in terms of discrete decision strategies by
applying a clustering algorithm to the cognitive operations it
performs to make its decisions.

Automatically Discovering Strategies for Mouselab

We set out to discover resource-rational heuristics by applying
our automatic strategy discovery method to the Mouselab task, the
classic process-tracing paradigm for multi-attribute risky choice
described above. In the experimental task (illustrated in Figure 1),
participants must select from a set of six gambles with four possible
outcomes. To reveal the value of a given gamble under a given
outcome, participants must click the corresponding cell in a table,
paying a cost for doing so. As illustrated in Figure 2, we model this
task as a meta-level MDP in which the belief state captures a
distribution for the expected value of each gamble given the
currently revealed values and computations correspond to revealing
a cell and updating the expected value distribution accordingly.
Solving this meta-level MDP yields a decision-making policy that
optimally trades off between the costs and benefits of considering
additional information.
The following sections explain how we modeled the problem of

meta-decision-making in the Mouselab paradigm as a meta-level
MDP, howwe solved this problem to identify optimal strategies, and
how we characterized the resulting solutions in terms of simple
heuristics.

The Mouselab Paradigm

In our version of the Mouselab paradigm, the alternatives are
gambles and the attributes of each gamble are its payoffs in the event
of different outcomes. The Mouselab paradigm traces people’s
decision process by recording the order in which they inspect
different pieces of information. Concretely, participants are
presented with a payoff matrix where the columns correspond to
the alternatives they are choosing between and the rows correspond

to different outcomes. Each cell in the payoff matrix specifies how
much the alternative corresponding to its column would pay
(in points, which translate to a monetary payoff) if the event
corresponding to its row was to occur. Critically, all the payoffs are
initially occluded, and the participant has to click on a cell to reveal
its entry. Each click comes at a cost, and participants are free to
inspect as many or as few cells as they would like. The probabilities
of the different outcomes are displayed from the beginning of
the trial.

Importantly, we view the task as an externalization of a decision-
making process that would typically occur mostly or entirely in a
person’s mind. Thus, clicking a cell in the matrix corresponds to the
cognitive operation of evaluating a possible outcome (e.g., by
memory look up or simulation). Because externalizing this operation
removes most of the associated cognitive cost, we externalize that
cost as an explicit point cost.

The resource-rational model makes strong predictions about how
the structure of the environment affects the heuristics people should
use. To test these predictions in a systematic and comprehensive way,
we considered a wide variety of decision environments that varied
across three parameters: (a) the “stakes” of the decision (the variance
of possible payoffs), (b) the “dispersion” of the outcome distribution
(lower values resulting in more similar probabilities for each
outcome), and (c) the “cost” of computation (the number of points
subtracted for each click).We considered two levels of stakes and five
levels for dispersion and cost, resulting in a total of 50 conditions.
Each environment was generated by sampling from a distribution
specified by the corresponding condition. The two levels of stakes
determined the distribution of payoffs, with lower variation in points
for low stakes and higher variation in points for high stakes (points
drawn from N ð0, σ2Þ where σ ∈ {75, 150}). The five levels of
dispersion determined the outcome probabilities, with all outcomes
being roughly equally likely for low dispersion, and one outcome
being much more likely than others for high dispersion (outcome
probabilities drawn from Dirichlet (α · 1) where α ∈ {10−1.0, 10−0.5,
100.0, 100.5, 101.0}). The cost of collecting informationwas defined by
the number of points subtracted for each click (λ ∈ {0, 1, 2, 4, 8}).

Meta-Level MDP Model

Before defining our meta-level MDP model, we briefly review
generic MDPs (Puterman, 2014). MDPs are the standard formalism
for modeling sequential decision problems, in which an agent
iteratively interacts with an environment to attain the largest possible
sum of rewards. An (undiscounted) MDP is defined by a four-tuple,
M = ðS,A, T , rÞ, where S is a set of possible environment states,
A is a set of actions that an agent can take, T is a transition function
that gives the probability of moving from state s ∈ S to state
sʹ conditioned on taking action a ∈ A: T(s, a, sʹ), and r is a reward
function describing the reward received for such a transition: r(s, a).
A reinforcement learning agent’s objective is to learn a policy, π, that
maps states onto actions to maximize total expected reward.

A meta-level MDP is a special case of an MDP that is used to
describe the sequential decision problem associated with making a
decision, through a process of performing computations that update
the agent’s beliefs about the external world. A meta-level MDP is
defined by a four-tuple, Mmeta = ðB, C, Tmeta, rmetaÞ. Here, states are
replaced by a set of beliefs, B, describing what the agent may think;
actions are replaced by a set of computations, C, describing
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cognitive operations the agent can perform; the meta-level transition
function, Tmeta, specifies the probability that a computation, c, made
with belief bwill lead to a new belief, bʹ: Tmeta(b, c, bʹ); finally, rmeta

encodes both the costs of computation (assigning a negative reward
for every computation executed) and also the quality of the ultimate
decision (assigning the expected external reward attained for the
external action that is ultimately executed; see rmeta(b, ⊥) below).
In addition to making computations, at any time, t, the meta-level

agent can choose to terminate deliberation by taking action ⊥, at
which point the meta-level reward function, rmeta, describes the
reward the agent will receive for taking the object-level (i.e.,
external) action that has highest expected utility given the current
belief; thus, rmetaðb,⊥Þ = maxa Es∼b½Uðs, aÞ� where U is the
external utility function. The meta-level agent’s objective is to
learn a meta-level policy, πmeta, that maximizes the trade-off
between decision quality, rmeta(b, ⊥), and accumulated computation
costs, t · λ, where t is the number of computations executed before
termination and λ is the cost of each computation.
We model optimal heuristics for risky choice in the Mouselab

paradigm as solutions to the meta-level MDP MMouselab = (B, C,
Tmeta, rmeta). Concretely, we characterize the decision-maker’s belief
state at time t by a set indicating which payoffs have already been
observed and processed (Ot) and probability distributions (bt,1, … ,
bt,n) over the expected utilities of the available gambles, each of
which is defined by

E½UðgÞ� =
X
o

pðoÞvo,g, (1)

where vo,g is the payoff of the gamble g under outcome o (V is the
payoff matrix). For each payoff, there is one computation co,g that
inspects the payoff vo,g and updates the agent’s belief about the
expected value of the inspected gamble accordingly. Since the
entries of the payoff matrix are drawn from the Gaussian distribution
N ðv̄, σ2vÞ, the resulting expected value distributions are also
Gaussian. Hence, the decision-maker’s belief about the expected
payoff of the gth gamble is represented by

bt,g =
�
bðμÞt,g , b

ðσ2Þ
t,g

�
, (2)

where bðμÞt,g and bðσ
2Þ

t,g are the mean and the variance of the probability
distribution on the expected value of gamble g given the belief state
bt. Given the set Ot = fðoð1Þ, gð1ÞÞ, · · · , ðoðtÞ, gðtÞÞg of the indices
of the t observations made so far, the means and variances
characterizing the decision-maker’s beliefs are given by

bðμÞt,g =
X
o

pðoÞ ·
�
vo,g if ðo, gÞ ∈ O
v̄ otherwise

, (3)

bðσ
2Þ

t,g =
X
o

pðoÞ2 ·
�
0 if ðo, gÞ ∈ O
σ2v otherwise

: (4)

That is, the belief about each gamble’s value is a Gaussian whose
mean is the expected value of the gamble (with unobserved payoffs
replaced by the average) and whose variance is the probability-
weighted sum of the variance induced by each unobserved payoff.
Note that, for simplicity, we assume that utility is linear in points;
however, the model could easily be extended to account for
nonlinear utility functions (e.g., risk aversion).

The meta-level transition function Tmeta(bt, co,g, bt+1) encodes a
probability distribution over what the updated means and variances
will be after observing a payoff value vo,g sampled from N ðv̄, σ2vÞ.
The meta-level reward for performing the computation co,g ∈ C
encodes that acquiring and processing an additional piece of
information is costly. We assume that the cost of all such
computations is a constant λ. The meta-level reward for terminating
deliberation and taking action is rmetaðbt ,⊥Þ = maxg b

ðμÞ
t,g , since the

agent will choose the action with the gamble with the highest
expected value.

Using this formalism, we can define a resource-rational heuristic
h* as the optimal policy for a meta-level MDP. The optimal meta-
level policy is the one that maximizes the meta-level reward for
making a decision in a well-informed belief state minus the cost of
attaining it, that is,

h* = argmax
πmeta

E
hX

t

rmetaðbt , πmetaðbtÞÞ
i
, (5)

= argmax
πmeta

E
h
max
g

bðμÞt⊥ ðgÞ − t⊥ · λ
i
, (6)

where the random variable t⊥ is the time step in which the meta-level
policy terminates deliberation and λ is the cost of a single
computation. Having redefined resource-rational heuristics in this
way now allows us to discover them by solving meta-level MDPs.
To be able to solve complex meta-level MDPs, we recently
developed the BMPS algorithm (Callaway et al., 2018). In
Appendix A we provide details of how this algorithm can be
applied to find near-optimal strategies in this model.

Identification of Resource-Rational Strategies

Before we discuss the strategies our method discovered, it is
important to note that theMouselab task only externalizes part of the
decision-making process, namely information search. We cannot
see how people actually use that information. How the acquired
information is used differs substantially across previously proposed
heuristics. For example, the equal weighting (Glöckner & Pachur,
2012) and WADD strategies both consider all available feature
values, but they will often yield different decisions because they
integrate the acquired information differently. Given that we cannot
directly observe how people use the information they acquire, we
chose to focus on the search process itself (assuming, for identifying
an optimal search process, that the collected information will be
used optimally). Accordingly, when comparing the model predic-
tions with previously proposed heuristics, we abstract away from
how information is used and focus instead on which information is
used at all.

As discussed above, previous work has identified a set of well-
known heuristics that people use in multi-attribute risky choice, each
of which is associated with a different pattern of information
seeking. For example, TTB chooses between alternative options
based on the one single attribute that is the best predictor of the
outcome (Gigerenzer & Goldstein, 1996).2 Another heuristic,
satisficing (SAT), considers alternative options until it finds one that

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

2 If there is a tie, then TTB considers the second most predictive attribute
(and so forth) but this scenario virtually never occurs in our paradigm
because there are about 1,000 possible payoffs.
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is good enough (Simon, 1956); it is sometimes referred to as a
conjunctive rule. These heuristics both ignore information about
some alternatives or attributes. In contrast, a less frugal strategy,
WADD, considers all the available information and computes the
expected payoffs of all alternatives (Gigerenzer & Goldstein, 1999;
Payne et al., 1988; Simon, 1956). It remains unknown, however,
whether additional heuristics exist. Here we set out to discover new
heuristics by exploring the full space of potential information search
strategies encompassed by all the wide range of decision environ-
ments we considered.
We found the best strategy for each of the 1,000 distinct Mouselab

problems, corresponding to 20 random samples of payoff matrices
in each of the 50 conditions outlined above. To explore this space in
a data-driven way, we applied the k-means clustering algorithm to
the sequences of actions (“clicks”) performed by our resource-
rational model. k-means clustering partitions the click sequences
into k discrete clusters of similar sequences, with the centroid of
each cluster showing the prototype click sequence for that cluster.
These prototypes highlight distinct types of heuristics that may be
deployed in the Mouselab task.
Prior to applying clustering, we transformed the click sequences

into a standard format as shown in Figure 3A. The following steps
were performed to reduce uninformative spatial variation across trials
in the locations of clicks. First, for each problem, a 4 × 6 indicator

matrix of click locations in theMouselab grid was generated. Second,
for each column, the sum of outcome probabilities for every observed
cell was computed. Last, we performed the following transformation
on the indicator matrix: Rows (outcomes) were rearranged from the
most to the least probable outcome, and columns (gambles) were
rearranged in descending order of the sum of the probabilities of the
outcomes observed in that column. This transformed binary matrix
from each trial was collapsed into a vector of length 24 (representing
click locations but not the temporal sequence of clicks), which
comprised a sample for k-means clustering.

We applied the Elkan k-means clustering algorithm to the locations
of clicks predicted by our resource-rational model across all 1,000
problems, with a Euclidean distance metric (Elkan, 2003). In this and
all subsequent analyses, the distribution of the 1,000 problems used to
measure the model’s behavior was exactly proportional to the
particular distribution of those trials received by all participants, to
remove variance from model-participant comparisons. We selected
k = 4 clusters because this identified unique types of click patterns;
k > 4 resulted in redundant clusters (see Figure B2, for a comparison
of different values of k). Note that this could be due to a limit in the
number of strategies people use or a limitation of the clustering
method.

Figure 3B (top) shows the centroids identified in the resource-
rational click sequences. Inspecting Centroid 1 suggests that our
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Figure 3
Identification of Heuristics

Note. (A) The sequence of clicks on a given trial is converted into an indicator matrix with uninformative
spatial variation removed. Rows are rearranged from the most to least probable outcome, and columns are
rearranged in descending order of the sum of the probabilities of the outcomes observed in that column. This
matrix is then flattened into a 24-dimensional vector. All 47,360 such vectors from our behavioral experiment
(2,368 participants × 20 trials per participant; visualized here projected onto 2D space via linear discriminant
analysis; Fisher, 1936) serve as input to a k-means clustering algorithm. A similar analysis was conducted on the
optimal heuristics identified by our model for the corresponding scenarios. (B) Centroids for the clusters
uncovered in human data and model simulations from Experiment 1. The first two clusters correspond in certain
ways to previously identified strategies: take-the-best (TTB) and weighted additive (WADD), respectively. The
third and fourth clusters correspond to the newly discovered strategies: satisficing-TTB (SAT-TTB) and targeted
search. A fifth cluster corresponding to gambling randomly (without gathering information) was also revealed in
the human data. prob. = probability. See the online article for the color version of this figure.
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method rediscovered the TTB heuristic (Gigerenzer & Goldstein,
1999), in which all gambles are evaluated based on the single most
likely outcome. This indicates that TTB strikes a near-optimal trade-
off between decision quality and cognitive cost, at least in some
situations. Rediscovering this classic heuristic provides support for
the validity of our approach. In contrast to the frugal TTB, Centroid
2 corresponds to considering (nearly) all the available information,
consistent with the WADD strategy. We refer to this pattern of
information seeking as “exhaustive search.”
Turning next to Centroid 3, we see a pattern of information search

not consistent with any previously proposed heuristic, to our
knowledge. We interpret this pattern as the search behavior of a
previously unknown heuristic. We call that heuristic “SAT-TTB”
because it combines elements of TTB and satisficing (see Figure 1).
Like TTB, SAT-TTB inspects only the payoffs for the most
probable outcome. But unlike TTB and like satisficing, SAT-TTB
terminates as soon as it finds a gamble whose payoff for the most
probable outcome is high enough, reducing the amount of
information considered.
Finally, Centroid 4 corresponds to an extended version of TTB in

which additional attributes of some options are considered.
Specifically, it starts by inspecting some or all of the payoffs for
the most probable outcome (as in SAT-TTB) but then inspects
additional payoffs for the second-most probable outcome from one
or more of the most promising gambles. Examples of this strategy
are shown in the sequence of clicks illustrated in Figures 2 and 3A.
This pattern of information seeking is consistent with both the
lexicographic semiorder strategy (e.g., Birnbaum & Gutierrez,
2007; Manzini & Mariotti, 2012; Safarzadeh & Rasti-Barzoki,
2018; Tversky, 1969) and elimination-by-aspects (Tversky, 1972).
However, unlike these heuristic decision strategies, the rational
model integrates information across attributes, selecting the option
with the maximal expected value given all revealed information. We
refer to this strategy as “targeted search.”
In addition to allowing us to identify these four strategies from the

optimal click patterns produced by the model, our approach allows
us to generate predictions about when a rational agent should choose
to employ each strategy. In particular, the 50 different conditions
reflecting different combinations of stakes, dispersion, and cost
result in significant variation in which strategy the model predicts
should be employed. In the remainder of the article, we compare
these predictions against human behavior, allowing us to examine
whether people appropriately adapt to which strategy they use and
how closely they approximate resource-rational performance.

Experiment 1: Evaluating the Model Predictions

To evaluate the model predictions, we conducted a large-scale
experiment, collecting choices from human participants in each of
the 50 conditions used to generate our model predictions.

Method

Participants

We recruited 2,368 participants on Amazon Mechanical Turk
(1,115 females, Mage = 37.6 years, SD = 16.4 years) and paid them
$0.50 plus a performance-dependent bonus of up to $10.38 (average
bonus $3.25) for a mean of 10.2 min of work (SD = 4.1 min).

Informed consent was obtained using a consent form approved by
the Institutional Review Board at Princeton University.

Stimuli and Procedure

Following instructions and a comprehension check, participants
performed a variation of the Mouselab task (Payne et al., 1988). Each
of the 20 trials began with a 4 × 6 grid of occluded payoffs: six
gambles to choose from (columns) and four possible outcomes
(rows). The occluded value in each cell specified how much the
gamble indicated by its column would pay if the outcome indicated
by its row occurred. The outcome probabilities were described by the
number of balls of a given color in a bin of 100 balls from which the
outcome would be drawn (see Figure 1). For each trial, participants
were free to inspect any number of cells before selecting a gamble.
Clicking on a cell revealed its payoff, and participants were charged a
fixed cost per click, depending on the condition. The value of each
inspected cell remained visible onscreen for the duration of the trial.
When a gamble was chosen, participants were informed about which
outcome had occurred, the resulting payoff of their chosen gamble,
and their net earnings (payoff minus click costs).

The experiment used a 2× 5× 5 between-subjects factorial design
with a total of 50 conditions, corresponding to those used to generate
the model predictions above. The parameters in each condition were
the same as those used for model simulations. These parameters
included (a) the stakes of the decision, with lower variation in points
for low stakes and higher variation in points for high stakes (points
drawn from N ð0, σ2Þ where σ ∈ {75, 150}), (b) the dispersion of
outcome probabilities, with one outcome being much more likely
than others for low dispersion and all outcomes being roughly
equally likely for high dispersion (outcome probabilities drawn from
Dirichlet(α · 1) where α ∈ {10−1.0, 10−0.5, 100.0, 100.5, 101.0}), and
(c) the cost of collecting information, defined by the number of
points subtracted for each click (λ ∈ {0, 1, 2, 4, 8}).

The instructions explained the task by walking the participant
through the demonstration of a trial with step-by-step explanations.
These explanations covered the cost of clicking, the way that their
payoff was determined, the range of payoffs, how some outcomes
were more likely than others, and a description of the performance
bonus ($0.01 for every 5 points). Participants were given three
practice trials, and after these instructions, they were given a quiz that
assessed their understanding of all critical information conveyed in
the instructions. The full experiment, including instructions, can be
viewed at https://kcggl-expt1.netlify.app/. If a participant answered
one or more questions incorrectly, they were required to reread the
instructions and retake the quiz. If they failed the quiz 3 times, they
were not allowed to participate in the main task.

Transparency and Openness

Our results did not exclude any participants (except were noted
for comparisons), the sample size per experimental condition was
selected prior to data analysis, and we report effect sizes. The model
simulations were run using Julia (Bezanson et al., 2017), including
the BayesianOptimization library. The behavioral analyses were run
using Python 3 (Van Rossum & Drake, 2009), including the
statsmodels (Seabold & Perktold, 2010), scikit-learn (Pedregosa et
al., 2011), and SciPy (Virtanen et al., 2020) libraries, and using R
(R Core Team, 2020) and RStudio (RStudio Team, 2019) with the
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lme4 library (Bates et al., 2015). The study design and analysis were
not preregistered. All code and data used to run the experiments and
produce the results presented in this article are available at https://gi
thub.com/fredcallaway/rational-heuristics-risky-choice/.

Results

We compared the clusters of click sequences produced by our
model to those produced by human participants. To further assess
the theoretical predictions of our method, we next examined how
these strategies depend on the structure of the environment. We
looked at how the resource-rational method adapts strategy use to
the statistics of the environment and then compared this to how
people’s strategies depend on the environment. Finally, we tested
additional theoretical predictions about the variability of people’s
choice behavior and quantified how our participants’ choice
behavior deviated from resource-rational decision making.

Identification of Strategies

As an initial analysis, we repeated the k-means clustering
procedure we used to characterize the different strategies employed
by our resource-rationalmodel. Data from each trial were transformed
in the same way as the model predictions, and the resulting
representations were clustered. For human participants, using k = 5
clusters produced distinct click patterns, whereas using k > 5 clusters
resulted in groups of redundant strategies (see Figure B3, for a
comparison of different values of k). The results are shown in
Figure 3B.
The first four clusters recapitulate those produced by the model,

manifesting the classic TTB strategy and WADD-like exhaustive
search as well as the newly discovered SAT-TTB strategy and
targeted search. While the resource-rational model never gambles
randomly, participants do occasionally gamble without gathering
any information; this is captured in Centroid 5. Overall, this analysis
suggests that people use similar information search strategies as the
resource-rational model.
Based on the clustering solution, we defined five distinct search

strategies to be considered in subsequent analyses as follows: (a)
targeted search was defined as clicking one or more cells from the
most probable row, and one or more cells from one or more
additional rows, but never more cells from a less probable row than
from amore probable row; (b) SAT-TTBwas defined as selecting 1–
5 cells from the most probable row, and nothing else, with the final
clicked cell having the highest payoff; (c) TTB was operationalized
as selecting all six cells from the most probable row, and nothing
else; (d) exhaustive search was defined as selecting all 24 cells; (e) a
random strategy entailed zero clicks. Finally, we considered a
miscellaneous category of other strategies, which were those not
consistent with any of the previous five definitions.
It is important to note that the identified clusters do not correspond

exactly to the search strategies defined above. In particular, targeted
search can often be captured by Clusters 1 or 3, in addition to
Cluster 4. To quantify these differences, Figure B1 shows a
confusionmatrix of cluster labels and decision strategies. Overall, the
automatic clustering and hand-defined strategy classification agree
55.4% of the time. Importantly, however, much of the confusion
occurs between the SAT-TTB and targeted search strategies. For
example, a trial that follows SAT-TTB except for one additional

click on another feature would likely be clustered with SAT-TTB
but would be classified as a targeted search. Collapsing across these
two clusters/strategies, the agreement rises to 73.0%. In the
remainder of our analyses, we focus on breaking down responses by
the hand-defined decision strategies to maximize the interpretability
of our results.

Finally, since the k-means clustering analysis was run at the group
level, we additionally measured the similarity between the model
and participants for patterns of clicking at the level of individual
trials. Comparing the click vectors of participants and the model, we
found that 66.8% of participants showed a significant (p < .05)
sensitivity to the structure of individual trials in the manner
predicted by the model. See Appendix C for details.

Comparison of Strategies Across Environments

The clustering results indicate that people use the same types of
strategies as the resource-rational model. To determine whether
people deploy these strategies rationally, we inspected how the
frequency with which people use each strategy depends on the
structure of the environment. Consistent with our main predictions,
we found that participants adapt their strategies to the environment
in much the sameway as the resource-rational model (see Figure 4).3

Our resource-rational model predicted that as the stakes increase,
participants should rely less on themost frugal strategy—SAT-TTB—
and more on targeted search, which gathers additional information.
The data confirmed both predictions; that is, regressing the
frequencies with which participants used each strategy on each of
the three environmental parameters in a logistic mixed-effects
regression with random intercepts revealed that the stakes had a
significant negative effect on the frequency of SAT-TTB (B=−2.3,
p < .001) and a significant positive effect on the frequency of
targeted search (B = −1.3, p < .001; left panels of Figure 4). In all
regressions, B values denote the effect of moving one step up in the
condition variable.

The model predicted that as the outcome distribution becomes
more peaky (i.e., higher dispersion), the use of TTB should steadily
increase; intuitively, one can focus on a single outcome when only
one is likely to occur. Our participants confirmed this prediction
(B = −5.5, p < .001; middle column of Figure 4). However, while
the resource-rational model most often uses targeted search in low-
dispersion environments, participants often resorted to choosing
randomly instead (B = −1.4, p < .001).

When there is no cost for gathering information, the model always
uses exhaustive search since the VOI is always positive. Although
participants also limited their use of exhaustive search to this case,
they were more likely to use targeted search. As the cost increases
from 1 to 8, the resource-rational model and participants show the
same pattern for the remaining three strategies: decreasing the use of
both targeted search (B = −0.8, p < .001) and TTB (B = −3.9, p <
.001), while increasing the use of the most frugal strategy, SAT-TTB
(B = −3.3, p < .001). Figures D1 and D2 compare strategy
frequencies in each of the 50 conditions, showing broad correspon-
dence between the resource-rational model and participants. Table D1
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3 To facilitate the comparison between the model predictions and
participant behavior, Figure 4 is conditioned on the four strategies shown,
that is, not including undefined patterns of clicking or random gambles.
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summarizes post hoc pairwise comparisons and effect sizes for the
statistics reported in this section.

Understanding Variability in Choice Behavior

Previous research on multi-attribute risky choice has character-
ized people’s choice behavior in the Mouselab paradigm in terms of
four features (Lohse & Johnson, 1996; Payne, 1976b; Payne et al.,
1988). The first feature is the total amount of information processed,
the second measures the relative frequency of attribute- versus
alternative-based information processing, and the third and fourth
features measure the variance in information gathering across
attributes and alternatives, respectively. Payne et al. (1988) used
these measures to assess how participants trade off effort and
accuracy across nine hand-selected heuristics, finding that both high
dispersion and time pressure lead to less information gathering,
more attribute-based processing relative to alternative-based
processing, and more selectivity for attributes (i.e., greater variance
in information gathering across each). The resource-rational model
predicts all of these effects (with click cost having a similar effect as
time pressure) as well as a similar pattern when the decision stakes
decrease. Here, we confirm that all these effects hold across a broad
set of decision environments. However, both the resource-rational
model and our participants deviate from the finding of Payne et al.
(1988) on the effect of dispersion on alternative variance.
We first considered the total amount of information gathered (i.e.,

the number of clicks made). As illustrated in Figure 5 (top panels),
participants adapted the amount of information gathered to the
environmental structure in much the same way as the model, but
they consistently gathered too little information. When the stakes
increase, the potential for large gains and large losses goes up, and this

merits more information gathering. Indeed, participants gathered
more information as the stakes increased (a linear mixed-effects
regression with random intercepts for participants revealed that the
stakes significantly predicted information gathered: B = 0.57, p =
.009).When the dispersion of outcome probabilities increases, people
should gather less information, since fewer outcomes (and thus cells)
are relevant to each gamble’s value; participants trended in this
direction (B = −0.13, p = .097). Finally, people reduced information
gathering as it became more costly to do so (B = −1.9, p < .001).
However, across all conditions, participants made on average 4.9
fewer clicks than the resource-rational model. We explore possible
explanations for this discrepancy below.

We next looked at a behavioral feature that characterizes the
sequences of information gathering. Specifically, we computed a
metric that measures the relative frequency of alternative-based
versus attribute-based processing. In attribute-based processing,
sequential clicks are made on one row/outcome (as in TTB and
SAT-TTB); this corresponds to comparing several gambles along
one dimension. In alternative-based processing, sequential clicks are
made on one column/gamble; this corresponds to evaluating one
gamble based on multiple features. We can measure the relative
frequency of alternative-based versus attribute-based processing in a
given trial as the number of sequential transitions between
alternative-based clicks minus the number of sequential transitions
between attribute-based clicks, divided by the sum of the two terms
(Payne, 1976b; Payne et al., 1988). This yields a number between −1
and +1, with positive values indicating alternative-based processing
and negative numbers indicating attribute-based processing. Figure 5
(bottom panels) shows that both the model and participants rely more
on attribute-based processing overall, but with the model favoring
this type of processing more heavily than people. Furthermore,
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Figure 4
Strategy Use Across Environments

Note. Use of exhaustive search, take-the-best (TTB), and variations of satisficing-TTB (SAT-TTB and targeted search) by the
resource-rational model and human participants in Experiment 1 as a function of the three environment parameters: σ, the
standard deviation of possible payoffs, α−1, the peakiness of the outcome distribution, and λ, the cost paid for each piece of
information revealed. Error bars show the 95% confidence interval across participants. See the online article for the color version
of this figure.
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participants adapted their processing pattern to the environment in all
of the ways predicted by themodel: They usedmore alternative-based
processing as the stakes increased (B = 0.052, p = .016) and as
dispersion increased (B = 0.084, p < .001), and they used more
attribute-based processing as cost increased (B = −0.073, p < .001).
A comparison of information gathering and alternative- versus
attribute-based processing for the model and participants across each
of the 50 decision environments is shown in Figure E1, showing an
overall qualitative correspondence.
Two additional informative behavioral markers are the variance

in the amount of information gathered across outcomes and
gambles. Attribute variance in information gathering is defined as
the variance of the proportion of clicks made on each row/outcome,
being zero if clicks are evenly divided across outcomes. High
attribute variance is a signature of “noncompensatory” strategies
that focus attention on a subset of attributes (because the less
important attributes cannot “compensate” for the more important
ones; Payne, 1976b; Payne et al., 1988). Alternative variance in
information gathering is defined in the same way, but for columns.
High alternative variance is a signature of strategies that either
gather more information for high-value gambles (as in targeted
search) or stop searching once a high-value gamble is found (as in
SAT-TTB). Figure E2 shows qualitative correspondence between
participants and the resource-rational model for both of these
measures. As the stakes increase, both the resource-rational model
and the participants spread their clicks more uniformly both across
attributes (attribute variance: B = −0.01, p < .001) and alternatives
(alternative variance: B = −0.004, p = .0016), likely due to an
overall increase in information gathering. When one outcome was
much more likely than all others, people tended to compare many
alternatives on that single outcome without considering any other
outcomes. As predicted, increasing the differences between the
probabilities of different outcomes (higher dispersion) therefore

made people distribute their attention less evenly across the different
attributes (B = 0.0091, p < .001) and more evenly across the
alternatives (B = −0.0026, p < .001). Finally, increasing the cost of
information made people more discerning in how much attention
they paid to different attributes (B = 0.017, p < .001) and different
alternatives (B = 0.009, p < .001). Payne et al. (1988) predicted that
time pressure would have a similar effect but observed a null result
on alternative variance. As noted below, this may be due to a small
sample size in their study. Figure E3 shows the qualitative
correspondence between the model and participants for these two
measures across all 50 decision environments.

It is noteworthy that whereas Payne et al. (1988) observed more
selectivity for alternatives (higher alternative variance) with high
dispersion, our resource-rational model makes the opposite prediction
and this prediction is confirmed by participant behavior. Our
prediction makes sense intuitively: As dispersion increases, informa-
tion from less likely attributes becomes less useful, and therefore
multiple samples within a single alternative become less useful,
consistent with more frequent use of TTB and less frequent use of
targeted search as dispersion increases (middle panels of Figure 4).
The most likely explanation for this inconsistency is that the result of
Payne et al. (1988) was spurious, as the study included only 16
participants and the p value was between .01 and .05. Table E1
presents the results of additional statistical tests for the results reported
in this section.

Decision Quality

In addition to providing a framework for discovering strategies, our
formalism provides a realistic normative standard for human decision
making. This allows us to determine to which extent human
deviations from perfectly rational decision making can be attributed
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Figure 5
Behavioral Correspondence Between Participants and the Resource-Rational Model in Experiment 1

Note. Top panels: The average number of values revealed by participants and the model as a function of each environment
parameter. Bottom panels: The same, but for a measure of alternative- versus attribute-based processing (negative indicates
attribute-based). Error bars show the 95% confidence interval across participants. See the online article for the color version of
this figure.
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to resource-rational consideration of the cost of gathering information
versus genuinely irrational use of one’s cognitive resources.
To quantify decision quality on a given trial, we divide the

expected value of the chosen gamble by themaximum expected value
of any gamble. This relative measure allows us to compare the
decisions of participants and the resource-rational model to
unboundedly optimal decisions made with perfect information.
Note that this metric applies to the decision itself, not the strategy; it
thus does not include or account for the cost of information gathering.
As illustrated in Figure 6, our resource-rational model achieved a

decision quality of relatively close to the unboundedly optimal
standard of 1.0, falling shorter when less information is gathered.
Concretely, the average decision quality was 0.895. Furthermore,
our model accurately predicted that participants’ decision quality
increases with the stakes (B = 0.039, p = .0035), decreases with the
dispersion of the outcome probabilities (B = 0.059, p < .001), and
decreases with the cost of gathering and processing information (B=
−0.063, p < .001). These results are shown in Figure 6.
It is apparent that participants underperform compared to the

model. The average decision quality of all participants was only
0.542. Thus, 23% of the gap between all participants’ decision
quality and the decision quality of the unboundedly optimal decision
strategy (i.e., maximizing expected value) can be explained by
resource-rational sensitivity to the imposed click cost, whereas 77%
is due to people’s deviations from the resource-rational model.
Importantly, this proportion could be further reduced by accounting
for additional costs and constraints not considered by our model,
which we set out to do in Experiment 2.
Table F1 summarizes the main effects, corrections for multiple

comparisons, and effect sizes for measuring decision quality across
conditions. Figure F2 shows a qualitative correspondence between
participants’ and the resource-rational model’s decision quality
across all 50 environmental conditions; see Appendix F for detailed
results when excluding low-effort participants who gambled
randomly on more than half of all trials (16.6% of participants).

Net Performance

The decision quality metric plotted in Figure 6 omitted the costs of
information gathering. This facilitates comparison across conditions
and provides a useful measure of the extrinsic quality of participants’
decisions. However, to assess the resource-rationality of our

participants’ strategies, we need to account for both external rewards
(gamble payoffs) and cognitive costs (operationalized here as click
costs). We thus define net performance on a given trial as the
expected payoff of the chosen gamble minus the costs of information
gathering (again, normalized by the expectedmaximum gamble value
to account for differences across conditions).

On average, participants’ net performance was 61.4% (95% CI
[58.8, 61.9]) that of the resource-rational model. That is, our
participants were quite far from the resource-rational benchmark. In
the following section, we consider possible explanations for
this gap.

Sources of Underperformance

We identified four possible reasons why people might not meet
the performance of the resource-rational model: implicit costs of
information gathering, imperfect use of the gathered information,
imperfect strategy selection, and imperfect strategy execution. As
shown in Figure 7, these four sources, respectively, accounted for
4.2%, 4.2%, 25.0%, and 5.2% of the total performance gap. Note
that, as defined, the factors necessarily account for the full gap of
38.6%. See Appendix F for detailed results when excluding low-
effort participants.

First, participants may be influenced by costs not accounted for by
our resource-rational model, for example, the time required to move
the cursor and the anticipated cognitive costs associated with
processing the revealed information (Payne et al., 1988). Such a cost
could explain why participants collected less information than in the
resource-rational model. To assess the degree to which participants’
suboptimal performance resulted from insufficient information
gathering, we used the performance of a model with an implicit cost
parameter fit to match the average number of clicks that participants
made (2.4 points per click). The net performance of this model (not
including the implicit cost) was 4.2% less than the original model.
Thus, implicit costs appear to explain a relatively small portion of
the gap.

A second source of underperformance is the imperfect use of
gathered information. Indeed, participants failed to choose the
gamble with the highest subjective expected value on 27.3% of all
trials. However, they lost only 10.4 points on average on such trials
(i.e., they tended to choose a gamble with close-to-maximal
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Figure 6
Decision Quality Across Conditions in Experiment 1

Note. Decision quality is defined as the expected value of the chosen gamble divided by the maximum expected value of any
gamble (not including click costs). Error bars show the 95% confidence interval across participants. See the online article for the
color version of this figure.
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expected value). In total, imperfect use of information accounted for
4.2% of the gap, about the same portion as implicit costs.
A third possible source of underperformance is imperfect strategy

selection. At an aggregate level, people use the same strategies as
the model in roughly correct proportion for each environment.
However, on a trial-by-trial basis, they may not always choose the
most effective strategy. To quantify the impact of imperfect strategy
selection on performance, we measured the reduction in net
performance on trials in which participants chose a different strategy
than the model, while controlling for the previous two sources of
underperformance (by conditioning on the amount of information
gathered and the use of information).4 This reduction accounted for
25.0% of the performance gap, by far the largest portion. Notably,
random gambling accounted for more than half of this portion of
the gap (13.9%).
Finally, even when participants choose the same strategy as the

model, they may not execute it perfectly. For example, they may set
an incorrect satisficing threshold in SAT-TTB, or they may consider
toomany or too few additional features in targeted search. To quantify
the impact of imperfect execution on performance, we compared
the participants’ and the model’s net performance when there
was agreement in trial-wise strategy selection, again controlling for
the first two sources of underperformance. This accounted for the
remaining 5.2% of the gap. Errors in executing targeted search—the
most complicated strategy—accounted for most of this source (4.0%).
Figure 8 provides a more detailed look at the impact of imperfect

strategy selection and execution, showing the average reduction in
performance associatedwith each possiblemodel–participant strategy

pair. Off-diagonal values correspond to imperfect strategy selection.
For example, trials in which participants gamble randomly and the
model chooses targeted search account for 7.5% of underperfor-
mance, and the sum of off-diagonal values in the “random” column
equals the corresponding 13.9% displayed in Figure 7. On-diagonal
values correspond to imperfect strategy execution. For example,
when both participants and the model chose targeted search,
participants lost an average of 4.0% of the model’s net performance.

Overall, these results suggest that while people use resource-
rational decision strategies and adapt them to the environment in a
similar way as the resource-rational model, they often do not use the
optimal strategy on a trial-by-trial basis.

Discussion

While our resource-rational model successfully predicted how
participants adapt their decision strategies and other behavioral
measures to the statistics of the decision environment, they still fell
considerably short of the standard set by our model. We have
attempted to understand the origins of this underperformance.

The first source of underperformance—implicit costs of gathering
information—was measured by controlling for the amount of
information gathered by the model. The parameter for the implicit
cost of information gathering is meant to account for all additional
costs of gathering and processing one piece of information people
might experience. This approach assumes that people plan
rationally, subject to their cognitive costs. However, it is also
possible that people simply gather less information than they should.
Furthermore, a simple cost-per-click is only a rough approximation
of the true information processing costs (which likely vary
depending on which information was acquired). Better characteriz-
ing the computational costs involved in risky choice, and
dissociating implicit costs from suboptimal information gathering,
is an important direction for future research. Finally, the use of clicks
to objectify the cognitive cost of information gathering was an
important feature of our paradigm, and in the Limitations section, we
discuss how future work might refine this procedure.

Experiment 2: Reducing Cognitive Constraints

In Experiment 1, we found a substantial gap between the
performance of our participants and the resource-rational model.
However, it remains unclear to what extent this gap is due to true
limitations in human resource-rationality as opposed to a failure of the
model to account for all relevant cognitive and opportunity costs. The
ideal way to answer this question would be to modify the model to
account for these costs; however, there are substantial methodological
challenges with doing so (see the Limitations section). Thus, we
instead take an empirical approach, modifying the experiment to
mitigate some of those costs. If the performance gap is reduced, we
can then account for that portion of the gap to the costs that we
mitigated.

In particular, we focused on the opportunity cost of time and the
cost of computing and maintaining expected values in working
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Figure 7
Sources of Underperformance in Experiment 1

Note. Participants’ net performance was 61.4% (95% CI [58.8, 61.9]) that
of the model, with four distinct sources of the remaining 38.6% gap depicted
here. Note that the net performance measure considered here includes
both expected payoffs and click costs. TTB = take-the-best; SAT-TTB =
satisficing-TTB. See the online article for the color version of this figure.

4 Since the model was simulated 1,000 times per trial, it may occasionally
choose different strategies for the same trial. Therefore, the contribution of
each strategy to the model’s net performance on a given trial—and the extent
to which it agrees with participant strategy selection—is weighted by the
probability of choosing each strategy on that trial.
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memory. For the former, we required participants to spend a
minimum of 20 s on each trial. For the latter, we displayed the
subjective expected value of each gamble given the observed
information, updating the values whenever new information was
revealed.

Method

Participants

We recruited 404 participants on Amazon Mechanical Turk (250
males, Mage = 37.5 years, SD = 10.8) and paid them $0.50 plus a
performance-dependent bonus of up to $4.23 (average bonus $1.66)
for about 13.3 min of work on average (SD = 6.4 min). Informed
consent was obtained using a consent form approved by the
Institutional Review Board at Princeton University.

Stimuli and Procedure

The experiment used a 2× 2× 2 between-subjects factorial design
with a total of eight conditions. The factors we varied between
participants were the dispersion of outcome probabilities (α ∈

{10−0.5, 100.5}), the cost of collecting information (λ ∈ {1, 4}), and
whether the participant was in the experimental group or the control
group. The stakes of the decisions were low in all conditions
(σ = 75).

For the control group, the task and the instructions were identical
to the previous experiment. For the experimental group, the
subjective expected value of each gamble given the observed
information was displayed next to the label for each gamble. Thus,
each time a participant clicked on a cell to reveal its value, the
expected value for that gamble was updated according to Equation 3
and displayed atop that column. Furthermore, the experimental
group was forced to spend a minimum of 20 s on each trial, and a
countdown timer was displayed for the first 20 s of each trial. After
the first 20 s, participants were free to spend additional time if they so
chose. Figure 9 shows a screenshot from a trial of the experimental
condition. These two features of the task were incorporated into the
instructions received prior to the task for this group. As a result of
these differences, participants in the experimental group spent more
time on the task and earned a greater performance bonus on average
(16.9 ± 5.3 min, $1.77 ± $0.97) than participants in the control group
(9.8 ± 5.2 min, $1.54 ± $0.95).

The stakes of the decisions—that is, the variation in outcomes—
were always low (σ= 75). To eliminate variance in performance due
to random sampling of trials, we used a single set of 40 problems (20
for each dispersion level), such that every participant in a given
condition solved the same set of problems. All participants were
required to pass the same comprehension quiz used in the previous
experiment. The experimental condition of this experiment can be
viewed at https://kcggl-expt2.netlify.app/.

Transparency and Openness

The data analyses relied on all the same practices and software
stated for the previous experiment. All code and data used to run the
experiments and produce the results are available at https://github.co
m/fredcallaway/rational-heuristics-risky-choice/.
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Figure 9
Screenshot From Experiment 2

Note. To reduce implicit costs associated with information gathering and
information use, participants in the experimental group were given a 20-s
time minimum per trial and a display of the subjective expected value of
every gamble. See the online article for the color version of this figure.

Figure 8
Sources of Imperfect Strategy Selection and Execution in
Experiment 1

Note. Each cell states participants’ average reduction of net performance
from a trial-wise comparison of model–participant strategy selection. Off-
diagonal cells correspond to imperfect strategy selection, while on-diagonal
values correspond to imperfect strategy execution. Colors correspond to the
number of trial-wise model–participant strategy pairs. For example, the
upper-left cell shows that trials in which participants and the model both
selected targeted search contributed to 4.0% to the decrement of participants’
net performance (with 9,625 such trials occurring out of the 47,360 trials
across all participants, thus the yellow color). The cell just below that shows
that participants on average lost 1.8% when they selected targeted search but
the model chose SAT-TTB, with 3,394 such trials occurring (thus the teal
color). TTB = take-the-best; SAT-TTB = satisficing-TTB. See the online
article for the color version of this figure.
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Results

Identification of Strategies

We applied the same k-means clustering procedure used in the
previous experiment, separately for the model, the experimental
group, and the control group. As shown in Figure 10, the clusters in
the control group closely matched those found in Experiment 1.
However, the experimental group did not contain a distinct cluster
for gambling randomly because random gambling was greatly
diminished for this group (6.6% vs. 28.6% of all trials, p < .001;
4.5% vs. 27.2% of participants gambled randomly on more than half
of all trials, p < .001). As described in detail below, this brought the
strategies of participants in the experimental group into greater
alignment with the optimal strategies predicted by our model.5

Comparison of Strategies Across Environments

For brevity, we use the following acronyms when referring to the
different environments: LD-LC for low dispersion, low cost; LD-
HC for low dispersion, high cost; HD-LC for high dispersion, low
cost; and HD-HC for high dispersion, high cost.
As illustrated in Figure 11, participants in the experimental group

showed an overall shift toward more costly strategies. In all
environments, a χ2 test of independence revealed an increase in the
use of targeted search, LD-LC: χ2(1, 3960) = 32.9, p < .001, d =
0.25; LD-HC: χ2(1, 3960) = 49.9, p < .001, d = 0.32; HD-LC: χ2(1,
3960) = 32.9, p < .001, d = 0.25; HD-HC: χ2(1, 3960) = 32.9, p <
.001, d = 0.25. Conversely, participants used the more frugal SAT-
TTB strategy less often in all environments except for the LD-HC
environment, LD-LC: χ2(1, 3960) = 12.4, p < .001, d = −0.16; LD-
HC: χ2(1, 3960)= 0.1, p< .8, d= 0.01; HD-LC: χ2(1, 3960)= 12.4,

p < .001, d = −0.16; HD-HC: χ2(1, 3960) = 12.4, p < .001, d =
−0.16. While these overall changes away from the frugal SAT-TTB
heuristic toward the more costly Target Search strategy brought
participants in the experimental condition closer to the predictions of
our resource-rational model, they shifted too far toward the most
costly strategy, exhaustive search. While the model never uses
exhaustive search, participants in the experimental group used it
more than those in the control group in all environments except HD-
LC, LD-LC: χ2(1, 3960) = 114.9, p < .001, d = 0.53; LD-HC: χ2(1,
3960)= 124.6, p< .001, d= 0.69; HD-LC: χ2(1, 3960)= 114.9, p<
.001, d= 0.53; HD-HC: χ2(1, 3960)= 114.9, p< .001, d= 0.53. For
a detailed comparison of the frequency of each strategy for each
group in each environment against our resource-rational model,
see Figure 11 (this figure omits random gambling to facilitate
comparison with Figure 4; to see the reduction in random gambling
in the experimental group, see Figure D5).

Information Gathering and Choice Behavior

The shift towardmore costly strategies in the experimental group is
apparent in an overall increase in information gathering compared to
the control group, as shown in Figure 12. In each environment,
participants in the experimental group gathered more information
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Figure 10
Experiment 2 k-Means Centroids

Note. The manipulations in the experimental group led to a great reduction in random gambling for participants in this group,
which is why a cluster for random gambling was unnecessary (middle panels). The model (top panel) and both groups of
participants performed the Mouselab task in low-stakes environments, with a 2 × 2 between-subjects design of outcome
dispersion and cost of information gathering. prob. = probability. See the online article for the color version of this figure.

5 The clusters discovered for the model are not identical to those seen in
Figure 3, corresponding to Experiment 1, because (a) the environments in
Experiment 2 are different; in particular, they are limited to low-stakes
environments and do not include any conditions where the cost of gathering
information is zero, as in Experiment 1, and (b) the particular trials presented
to participants within the low-stakes condition are not identical across
experiments (and all model comparisons use the same distribution of trials
that are presented to participants).
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than those in the control group, two-sample t tests; LD-LC: t(102) =
4.88, p < .001, d = 0.96; LD-HC: t(100) = 4.71, p < .001, d = 0.93;
HD-LC: t(100) = 3.23, p < .0017, d = 0.64; HD-HC: t(94) = 3.31,
p < .0013, d = 0.68. Participants’ levels of information gathering
were closer to that of the model than participants in the control group
in all environments except LD-HC (Figure 12, top panels). In the LD-
HC environment, participants in the experimental group actually
gathered too much information (Figure 12, bottom panels). These
absolute deviations of participant mean information gathering from
the model was improved significantly in the experimental group
compared to the control group only in the HD-LC condition, LD-LC:
t(102)=−0.38, p< .7, d=−0.07; LD-HC: t(100)= 0.74, p< .46, d=
0.15; HD-LC: t(100)=−2.65, p< .0094, d=−0.52; HD-HC: t(94)=
−0.45, p < .65, d = −0.09.
We additionally inspected the same three behavioral features

of alternative- and attribute-based information processing as in
Experiment 1, and these results are presented in Appendix E.

Decision Quality

The model achieved an average decision quality of 0.886; that is,
it achieved 88.6% of the unboundedly optimal expected payoff (the
difference from Experiment 1 is due to the different environment
parameters). Similar to Experiment 1, participants in the control
group achieved an average decision quality of 0.479. By contrast,
the experimental group achieved an average decision quality of
0.678. Excluding low-effort participants increased these values to
.621 for the control group and .788 for the experimental group, with
the model’s decision quality equals to .879 for the same trials. This

suggests that about 44% of the control group’s total performance
gap relative to unboundedly optimal performance stems from
unaccounted cognitive limitations. The resource-rational model
explains an additional 32% of this gap. The remaining 24% appear
to result from people’s deviations from resource-rational decision
making.

Net Performance

Given that participants in the experimental group behaved more
similar to the optimal model in some manners/cases but less similar
in others, we next asked how participants’ overall (net) performance
was affected by the experimental intervention. Recall that this
measure includes the cost of clicking as well as the expected payoff
of the chosen gamble. Thus, this measure of performance does not
give an unfair advantage to participants in the experimental group,
who gather more information.

As illustrated in Figure 13, participants in the experimental group
achieved numerically higher net performance in three of the four
environments, but not in the LD-HC environment. This improvement,
however, was only significant in the HD-LC environment, t(100) =
2.60, p < .011, d = 0.52. The difference was not significant in any
other environment, LD-LC: t(102)= 1.51, p< .13, d= 0.30; LD-HC:
t(100) = −1.77, p < .079, d = −0.35; HD-HC: t(94) = 0.73, p < .47,
d= 0.15. Across all conditions, participants in the experimental group
were not significantly more resource-rational than participants in the
control group, t(402) = 1.12, p < .26, d = 0.11.

Participants in the experimental group should be expected to
choose the gamble with the highest subjective expected value on

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

Figure 11
Reducing Implicit Costs Increases the Use of Costly Strategies

Note. Participants in the experimental group in Experiment 2 show a general increase in the use of targeted
search, and even exhaustive search, and a general decrease in the most frugal heuristic, SAT-TTB. TTB =
take-the-best; SAT-TTB = satisficing-TTB. See the online article for the color version of this figure.
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100% of trials, since they were given these values (see Figure 9).
However, they failed to do so on 17.6% of all trials. As a result, they
actually lost more points per trial on average than participants in the
control group as a result of these errors, 3.3 versus 1.6 points per
trial, t(402)=−2.34, p< .02, d=−0.23. This counterintuitive result
is manifestly an artifact of participants not performing the task in
good faith, since participants in the experimental group were given
the best option. Whereas low-effort participants have the option to
gamble randomly in the control group or in Experiment 1, in the
experimental group, they are forced to wait 20 s. It appears that such
low-effort participants gambled randomly after gathering excessive
information during the forced wait. To address this, we excluded an
equal fraction of participants from both groups based on participant
deviation from model performance (see the section on Experiment 2
in Appendix F for details).
When excluding low-effort participants from both groups,

participants in the experimental group were significantly more
resource-rational than participants in the control group in every
condition, LD-LC: t(55)= 2.36, p < .022, d= 0.63; LD-HC: t(80) =
4.02, p < .001, d = 0.90; HD-LC: t(78) = 2.26, p < .027, d = 0.51;
HD-HC: t(73) = 2.30, p < .024, d = 0.53.

Sources of Underperformance

As in Experiment 1, we measured participants’ net performance
and four sources of underperformance as a percentage of themodel’s
net performance. Figure 14 compares these results for participants

from each condition, showing that participants in the control and
experimental groups achieved 55.1% (95% CI [47.8, 59.5]) and
62.1% (95% CI [51.5, 67.6]) of the net performance of the model,
respectively. Below we break these gaps down into their four
possible sources, as we did in Experiment 1.

Consistent with the goal of our manipulation, participants in the
experimental group gathered about the same amount of information
as the resource-rational model on average across all environments:
The fit implicit cost of clicking was 0.0 points per click for the
experimental group and 2.9 for the control group. As a result,
performance for participants in the experimental group was not
degraded due to implicit costs, while this accounted for a large portion
of underperformance for participants in the control group (0.0% vs.
9.6%, respectively, as shown in Figure 14). Surprisingly, participants
in the experimental group showedmore imperfect use of information
than participants in the control group (8.9% vs. 4.2%). As described
in the previous section, this is due to low-effort participants in the
experimental group not performing the task as instructed, since the
values were given to make perfect use of information. As shown in
Figure F7, when excluding low-performing participants, imperfect
information use accounted for 2.1% of underperformance in the
control group and 1.9% in the experimental group.

We next considered how imperfect strategy selection and execution
differed between the two groups. As shown in Figure 14, imperfect
strategy selection accounted for 28.8% of underperformance in the
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Figure 12
Information Gathering for Each Group in Experiment 2

Note. Participants in the experimental group successfully increased their
information gathering near levels of the model in the low-cost conditions
(upper panels) but gathered excessive information in the high-cost conditions
(lower panels). Error bars show 95% confidence interval. LD = low
dispersion; HD = high dispersion; LC = low cost; HC = high cost. See the
online article for the color version of this figure.

Figure 13
Net Performance (Including Click Cost) Across Conditions for Each
Group in Experiment 2

Note. To facilitate comparison across conditions, we normalize net
performance by the expected maximum gamble value. Participants in the
experimental condition tended to perform better, but not in all conditions (see
Figure F6, for a comparison when excluding low-effort participants). Error
bars show 95% confidence interval across participants. LD= low dispersion;
HD = high dispersion; LC = low cost; HC = high cost. See the online article
for the color version of this figure.
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control group and 23.6% in the experimental group, while imperfect
strategy execution accounted for 2.3% and 5.5%, respectively.
Consistent with Experiment 1, engaging in random gambling was the
most frequent instance of imperfect strategy selection for participants
in the control group, alone accounting for 27.7% of under-
performance. In the experimental group, this proportion was reduced
to 5.2%. On the other hand, whereas the use of exhaustive search
accounted for only 0.9% of underperformance in the control group, it
accounted for 8.3% in the experimental group, more than any
other strategy. While imperfect execution accounted for a modest
proportion of underperformance in both groups, it was slightly more
in the experimental group, due to the increased usage of the difficult-
to-execute targeted search strategy. Figure 15 shows the sources of
imperfect strategy selection (off-diagonal values) and execution
(diagonal values) from every strategy. It shows that of the 8.3%
reduction in performance from incorrectly selecting exhaustive search
in the experimental group,most of it—4.9%—occurred when the best
strategy to select was targeted search.

Discussion

The experimental manipulations in Experiment 2 were effective
at reducing the implicit cost of information gathering identified in
Experiment 2. The most pronounced effect of increased information
gathering in the experimental group was a reduction of random
gambling and an increase in the use of exhaustive search and
targeted search. However, in the high-cost conditions, participants

in the experimental group actually gathered too much information.
Surprisingly, we did not find that imperfect use of information was
reduced in the experimental group (in fact, it increased, although not
after excluding low-effort participants). When excluding low-effort
participants, we did find that participants in the experimental group
were significantly more resource-rational than participants in the
control group. However, there was still room for improvement in
this group. Overall, these findings suggest that people deviate from
resource-rational decision making even in settings where the
assumptions of the resource-rational model are met.

General Discussion

Traditionally, rational models and the heuristics and biases
approach have offered very different views of human decision
making. As a result, researchers studying human decision making
have typically had to choose between assuming people are rational
or characterizing their behavior as the result of following heuristics
that result in systematic biases. Each approach has advantages and
disadvantages. Assuming rationality makes it easy to generate
predictions across a wide range of circumstances, but people
sometimes systematically deviate from rational principles. Research
on heuristics and biases has characterized these deviations, but with
many possible heuristics, it can be difficult to predict what people
will do in novel situations.

In this work, we have offered a way to reconcile these two
perspectives—rationality and heuristics—by deriving optimal
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Figure 14
Source of Underperformance for Each Group in Experiment 2

Note. Each pie chart shows the percentage of model net performance achieved by participants in beige, with the remaining percentage (the
performance gap) broken up into different sources of underperformance. Compared to participants in the control group (left pie chart),
participants in the experimental group (right pie chart) showed slightly better overall performance, with no implicit costs of gathering
information, andmuch less reduction from random gambling. Because some participants in the experimental group do not follow the instructions
to make perfect use of information, Figure F7 shows the same results after excluding low-effort participants from both groups. TTB = take-the-
best; SAT-TTB = satisficing-TTB. See the online article for the color version of this figure.
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strategies for multi-alternative, multi-attribute decision making from
a rational analysis of how people should allocate their limited
cognitive resources. This approach of applying rationality to
cognitive processes themselves provides a general framework for
understanding decision making that can also make task-specific
predictions. Drawing on ideas from artificial intelligence and
machine learning, we were able to both establish a normative basis
for previously identified heuristics and also discover new strategies
that had previously been overlooked. Furthermore, we collected a
large data set to test our method across a very broad range of
decision environments, demonstrating both the generalizability and
accuracy of our approach. Our results show that people use all the
strategies that our method identified, and they adaptively select
which strategy to use in a way that is consistent with our framework.
However, the match was by no means perfect; there is still room to
improve on human decision making.
One of the key ideas behind our approach is that we can formulate

the problem of discovering decision strategies and predicting when
they should be used as one of finding the optimal policy of a meta-
level MDP (Hay et al., 2012; Russell & Wefald, 1991b). The meta-
level MDP framework allows us to identify those decision strategies
that optimally trade off the costs associated with acquiring
information to update one’s beliefs about the world with the
benefits of that information. This results in a normative view of
heuristics, providing a reconciliation between these historically
divergent views of decision making.
Of course, the idea that people trade-off decision accuracy and

effort is not new (Beach &Mitchell, 1978; Kool & Botvinick, 2018;

Lieder & Griffiths, 2017; Shah & Oppenheimer, 2008; Shenhav et
al., 2017). Indeed, intuitions about minimizing effort underlie most
work on heuristics, including early work with the Mouselab
paradigm (Payne et al., 1988). More recent work has explicitly
formalized decision making in the Mouselab paradigm from a
resource-rational perspective (Gabaix et al., 2006). The meta-level
MDP framework provides a new set of computational tools for
understanding heuristics through this lens. In particular, it allows us
to identify strategies that strike an optimal trade-off between
computational costs and decision quality. Moreover, our approach
can be naturally generalized to other tasks.

While the idea that people trade-off decision accuracy and effort
is not new (Beach & Mitchell, 1978; Shah & Oppenheimer, 2008),
and information gathering in Mouselab has previously been studied
from a resource-rational perspective (Gabaix et al., 2006), the meta-
level MDP framework provides a new set of computational tools for
understanding heuristics through this lens. The result is that we can
formally identify information search strategies that achieve an
optimal trade-off between computational costs and decision quality.
By automatically deriving decision strategies from a normative
model, we can avoid the cumbersome and inexact process of
searching for heuristics by hand that psychologists have relied on in
the past.

In addition to offering a normative standard for evaluating
heuristics, themeta-levelMDP formalismmakes our resource-rational
framework generally applicable to any decision-making process. This
formalism breaks down decision making into an arbitrary discrete set
of cognitive operations and then applies reinforcement learning to this
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Figure 15
Sources of Imperfect Strategy Selection (Off-Diagonal Values) and Imperfect Strategy Execution (Diagonal Values) for Each
Strategy, for the Control Group (Left Plot) and the Experimental Group (Right Plot) in Experiment 2

Note. Experimental participants’ excessive use of exhaustive search occurred mostly when they should have used targeted search, according to
the model, while control participants’ excessive use of random gambling occurred mostly when they should have used SAT-TTB. TTB = take-
the-best; SAT-TTB = satisficing-TTB. See the online article for the color version of this figure.
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decision-making process itself. This provides a general-purpose
approach for deriving optimal heuristics that avoids the need to search
an intractable combinatorial space of possible heuristics. It also
provides a normative benchmark for evaluating heuristics, that is, by
the total meta-level reward they achieve.
We demonstrated the usefulness of this approach using the

Mouselab task, which is a classic, well-studied process-tracing
paradigm (Payne et al., 1993). While the Mouselab task has been
widely used to study decision strategies, these studies are typically
limited to around 20–40 participants (e.g., Arieli et al., 2011;
Bieleke et al., 2020; Dieckmann & Rieskamp, 2007; Lohse &
Johnson, 1996; Payne et al., 1988; Reisen et al., 2008; Rieskamp &
Otto, 2006), rarely exceed 100 (Dhar et al., 1999; Mata et al., 2007;
Sen, 1999), and the largest study that the authors are aware of
collected 255 participants in a 2 × 2 between-subjects design, which
examined the interaction between negative affect and choice
difficulty on decision strategies (Stone & Kadous, 1997). In the
present study, we searched for heuristics across a broad space of
decision environments and tested whether strategies change across
the parameters of those environments. This necessitated a large-
scale experiment using the Mouselab task. Future work may apply
our meta-level MDP framework to potentially any kind of decision-
making process, providing a general-purpose, normative approach
for understanding how people think and derive strategies for making
decisions.
We found that participants used the same four strategies as the

resource-rational model; how did they acquire these strategies? It is
typically assumed that people have a limited toolkit of general-
purpose heuristics that are adapted to real-world environments (e.g.,
Gigerenzer & Selten, 2002; Hutchinson & Gigerenzer, 2005; Klein,
2008). More specifically, heuristics are thought to develop slowly
through evolution and/or learning, rather than being crafted on the
fly at decision time. One consequence of this is that, in addition to
limitations in cognitive resources and time, humans have a limited
toolkit of heuristics to deploy—those which they have previously
acquired through evolution and learning (Gigerenzer & Selten,
2002). That these general-purpose heuristics turn out to be resource-
rational in our task highlights the effectiveness of these strategies
and perhaps the usefulness of the Mouselab task in capturing
important characteristics of real-world risky choice.
In addition to offering a method for deriving optimal heuristics, our

approach provides a more realistic framework for both evaluating
and improving human decision making. To rigorously evaluate
and improve decision making, we should understand the agent’s
computational goal and how it goes about solving it. The resource-
rational analysis presented here is an attempt to reverse engineer
this decision process by comparing human behavior to the predictions
of our resource-rational model. In our experiment, people did indeed
use the same strategies as the resource-rational model. Furthermore,
the heuristic solutions arising from our framework are inherently
sensitive to the statistics of the decision environment—including the
stakes of possible reward, the dispersion of possible outcomes, and
the cost of acquiring information—and people adapted their strategies
to the decision environment in a manner largely consistent with
resource-rationality. While participants’ performance was consistent
with rational use of cognitive resources, they performed below
the level of the resource-rational model (Figure 6). Crucially, the
underperformance persisted even when we modified the environment
in such a way that the assumptions of our resource-rational model

were met (Experiment 2). This suggests that human decision making
still has room for improvement, even when people’s cognitive
constraints are taken into account. Our method could be used to
provide feedback and teach people which heuristics to use and
under what circumstances, in a manner that accounts for their
cognitive limitations, providing a computationally informed path to
improving human decision making (Becker et al., 2022; Callaway,
Jain, et al., 2022; Consul et al., 2022; Mehta et al., 2022; Skirzyński
et al., 2021).

Why did people underperform relative to the resource-rational
strategies? First, it is important to note that our normative framework
should not be mistaken for a descriptive account. Rather, it provides
a prescriptive account of how people ought to behave in the
Mouselab task. It is therefore not surprising that participants earned
less reward than the resource-rational model. Indeed, a key
contribution of our approach is that it allowed us to characterize
in detail how and (to some extent) why people deviated from the
resource-rational benchmark. While these sources of underperfor-
mance suggest specific ways that people could improve their
decision-making strategies, achieving perfect resource-rationality
may still be unattainable. In fact, given that resource-rational
decision making is itself an intractable problem (Russell, 2016), this
is almost certainly the case. Importantly, however, this does not
undermine the value of the approach, for many of the same reasons
that traditional rational or “computational level” analyses are useful
(Anderson, 2013; Marr, 1982). Providing a rational benchmark for
resource-constrained agents reveals both the strengths and weak-
nesses of human decision making and suggests important directions
for future research.

Another possible explanation for the underperformance, one which
we did not consider above, is that the computations people use are
different from those assumed by our model. Specifically, we assumed
an idealized set of cognitive operations based on Bayesian updating,
such that each piece of revealed information is perfectly integrated
into a posterior belief about the expected payoff of the corresponding
gamble. But if that integration process is itself composed of multiple
costly operations (e.g., multiplication and addition), then people
might not—and indeed, should not—fully integrate all revealed
information. This would result in worse performance given the same
number of clicks. Applying our method with a fine-grained set of
operations (which may include the “EIPs” discussed above) is thus an
important direction for future work. This could also be used to
account for subjective attitudes toward risk, as discussed above, and
other subjective biases (e.g., priors about unrevealed information for
unlikely attributes that are biased toward large losses or rewards).
These modifications may allow us to better understand the sources of
implicit costs of information gathering and the imperfect use of
information observed in the current experiments. By expanding the
set of computational actions available, we can potentially identify
more nuanced strategies and achieve an even closer correspondence
to human behavior. Refining the model in this way could also allow it
to account for the imperfect strategy selection and imperfect strategy
execution we observed relative to the current model.

Limitations

This work is a first proof of concept that meta-level MDPs can be
used to understand the decision-making process that gives rise
to heuristics. However, as is often the case with computational
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modeling, the ecological validity of the paradigm and modeling
framework comes with a trade-off in computational tractability and
precision. Below, we highlight a few such simplifications that we
hope will be improved upon in future work.
Unlike usual experiments with the Mouselab paradigm, in this

work, probabilities were revealed at no cost. This prevents us from
discovering or empirically observing heuristics that do not use
probabilities (Glöckner & Pachur, 2012, e.g., minimax, maximax,
equal weighting). Themain reason for this is that we do not currently
have a way to compute the VOI for probabilities. Furthermore, in
many situations, revealing probabilities would be more valuable
than collecting information, but in the real world, these probabilities
do not have to be reasoned out in the same way as the counterfactual
benefits of alternative attributes in hypothetical situations (e.g.,
“How much better would it be to have a comfortable sofa bed when
someone visits us?”) because they are largely learned from repeated
experience (Hertwig et al., 2004, “This happens about thrice a
year”). Hence, the real-world applicability of an explicit operation to
reveal a probability is arguably limited as well.
Another substantial modification we made to the Mouselab

paradigm lies in how information is revealed. In the original version
of the Mouselab paradigm, information could be revealed at no cost
(besides the time and effort of moving the cursor), and it was only
visible while the cursor was hovering over the corresponding cell.
This is thought to mimic the real-world process of gathering
information through eye movements (Glöckner & Betsch, 2008;
Lohse & Johnson, 1996; Reisen et al., 2008, although there is
conflicting evidence as to how similar the two processes are). In
contrast, in our version of the task, there was an explicit cost for
revealing each piece of information, and it remained visible for the
remainder of the trial after being revealed. The explicit cost is
intended to operationalize the cognitive cost of evaluating an
outcome (Bakkour et al., 2019; Biderman et al., 2020, e.g., by
memory recall). While these external click costs do not capture all
internal cognitive costs (discussed further below), our assumption is
that the click costs in our paradigm outweigh purely cognitive costs.
As for leaving the information visible, this was purely a pragmatic
choice. Because the model does not account for working memory
constraints (discussed below), it cannot predict or account for the
“reacquisition” of previously revealed information—something that
is also true of all the classic heuristic decision strategies we have
considered. However, as we discuss below, our resource-rational
framework is well-suited to develop such models. Developing such
models and evaluating them in the original version of the Mouselab
paradigm (where each outcome is only visible while the mouse is
hovering over it) is a promising direction for future research.
Perhaps the most substantial limitation of the current work is our

simplistic model of cognitive cost. Below we identify three specific
ways the cost model could be improved.
First, we assume a uniform and fixed cost of considering any

piece of information. In the real world, however, some pieces of
information may be more costly to consider than others. For
example, some information may be less readily accessible in
memory, or even be absent from memory entirely, necessitating
external information search. Furthermore, the cost of considering
information may vary over time, for example, increasing as the
deadline for a decision approaches. Fortunately, it would be
relatively easy to account for these types of costs in the model and
paradigm, by varying the cost for revealing different cells or

increasing the cost over the course of a trial. Accounting for such
varying costs in a resource-rational model may uncover new types of
rational heuristics that this work could not identify.

Second, the model does not account for the cost of integrating
information. The current model treats “consideration” of a feature as
an atomic operation, with a fixed cost. However, this operation
actually involves several suboperations such as weighing outcomes
by probabilities and updating expected values. Critically, some of
these operations can be avoided when only one outcome is
considered (at a time). Accounting for such costs could provide a
rational account of strategies like the lexicographic semiorder
heuristic, which do not account for all considered information in its
choices. Pursuing such a model will likely require developing more
advanced computational methods for approximating the value of
computation, as it is not clear how to quantify the VOI produced by
these lower level operations.

Third, the model does not account for the cost of maintaining
information in working memory. Although such costs are mitigated
to some extent by our version of the Mouselab task (with revealed
values remaining on screen), expected values that combine
information in a column must still be maintained, and this is
something our model does not account for. Such costs would be
even more important in naturalistic decisions where most or all
information must be represented internally. Future work should
extend our model to account for these costs, perhaps drawing on
previous resource-rational models of working memory allocation
and maintenance outside of decision-making contexts (Suchow &
Griffiths, 2016; van den Berg & Ma, 2018; Yoo et al., 2018).

Accounting for these additional costs would allow our model to
predict not only which pieces of information are acquired but also
how they are used in the service of making a choice. This could help
the model explain cases where people do not choose the option with
the maximum expected value given the revealed information.
Furthermore, it would allow our method to discover heuristics like
equal weighting and elimination by aspects, which do not use an
optimal Bayesian decision rule. Identifying implicit costs that make
these kinds of strategies rational is an especially exciting direction
for future research.

Measuring the decision rule used subsequent to information
search, and how participants use probabilities, would allow for more
precise identification of heuristics. In the case of TTB and SAT-
TTB, since only a single attribute is considered, there is only one
reasonable way to use the revealed information; but in the case of
target search and exhaustive search, the final decision rule depends
on how probabilities are weighed. Assessing how probabilities are
used would allow for the distinction between WADD versus an
equally weighted strategy, and whether Target Search corresponds
to elimination-by-aspects or another heuristic. We measured
strategies primarily through patterns of information search, but
some heuristics are defined by additional characteristics. Future
work should measure how probabilities are used and the final
decision rule used after the information search.

A final limitation of this work is that we have only identified which
heuristics are rational to use in different settings (modulo our
assumptions about cost), but we have not attempted to explain how
people learn those heuristics nor how they select between them. We
have merely compared the information search behavior resulting from
human learning and strategy selection to the rational use of rational
heuristics prescribed by our resource-rational analysis. This
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comparison suggests that people deploy heuristics adaptively, but not
perfectly. That is, just as there are bounds on human rationality in the
traditional sense, there appear to also be bounds on human resource-
rationality. Future work should explore process-level theories of
strategy learning and selection that can explain this pattern of behavior.

Conclusion

Overall, our findings show that participants use resource-rational
decision strategies in an adaptive manner, suggesting that people
have highly effective mechanisms for discovering and selecting
good heuristics. Understanding those mechanisms and how they
emerge is an important direction for future research. On the other
hand, the deviations from resource-rationality suggest that people
might experience additional costs and that their mechanisms for
discovering and applying heuristics are imperfect. Future research
should attempt to characterize these costs, investigate how people
discover heuristics, and develop interventions that improve people’s
capacity to discover and adaptively choose between heuristics.
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Appendix A

Bayesian Meta-Level Policy Search

Bayesian meta-level policy search (BMPS) is a reinforcement
learning algorithm for solving meta-level MDPs that we recently
developed to address the computational challenges of strategy
discovery (Callaway et al., 2018). BMPS rests on the idea that the
value of computation can be approximated by interpolating between
the myopic value of computation, the value of perfect information
about the gamble that the computation is reasoning about, and the
value of perfect information. Concretely, the BMPS policy is
defined as

πmetaðbÞ = argmax
c

w1 · VOI1ðb, cÞ + w2 · VPIsubðb, cÞ
+ w3 · VPIðbÞ − w4 · costðcÞ, (A1)

subject to the constraints that w1, … , w3 ∈ [0, 1], w1 + w2 + w3 = 1,
and w4 > 0. BMPS identifies a set of weights that maximize the
expected return (total meta-level reward) of this policy.
To compute optimal risky choice strategies, we applied BMPS to

the meta-level MDP model of decision making in the Mouselab
paradigm described in the main text. To achieve this, we instantiated
the four features that BMPS uses to approximate the value of
computation as follows: First, the value of perfect information is the
expected improvement in decision quality if one knew the exact
values of every gamble, rather than deciding based on the current
belief state. Formally, it is

VPIðbtÞ = E
v*g ∼ bt

h
max
g

v*g
i
−max

g
bðμÞt, g , (A2)

where the expectation over the true gamble values, v*g, is taken with
respect to the current belief state, capturing the fact that previous
computation informs how valuable future computation will be (e.g.,
if one gamble is already almost certainly better than the others, there
is little value to computing more).
Second, the myopic value of information is the expected

improvement in decision quality if one executes one more
computation before making a decision. Formally, it is

VOI1 ðbt , cÞ = E
bt+ 1 ∼ Tmeanðbt , c·Þ

�
max
g

bðμÞt+1, g

�
−max

g
bðμÞt, g : (A3)

The previous two features provide upper and lower bounds on the
true value of executing a computation, based on upper and lower
bounds on the amount of future computation that could be executed.
We can also consider the value of intermediate amounts of
computation; in particular, we use the value of learning the exact
value of just one gamble, the one that the considered computation is
reasoning about. This is defined as the expected maximum of the
true value of that gamble and the current expected value of the best
alternative gamble. Formally,

VPIsub ðbt , cÞ = E
v*
g c jbt, g c

�
max

�
v*gc, max

g≠gc
bðμÞt, g

��
−max

g
bðμÞt, g , (A4)

where gc is the gamble that computation c is reasoning about and v*gc
is the (hypothetical) true value of that gamble. As before the
expectation is taken with respect to the current belief about the value
of the gamble, and we subtract the value of deciding immediately.

Finally, the cost of computation feature was simply

costðcÞ = −rmetað· , cÞ = λ: (A5)

We applied BMPS separately to each of the 50 meta-level MDPs
modeling the 50 types of decision environments used in the
experiment. For each environment, we ran 500 iterations of Bayesian
optimization. In each iteration, the algorithm chooses a candidate
weight vector and estimates the performance of the corresponding
policy averaged across 10,000 simulated decisions. Each of the
10,000 decisions is made in an environment with independent payoff
values and outcome probabilities (sampled according to the
environment’s α and σ parameters). The algorithm then returns
the weight vector with the highest expected performance. See
Callaway et al. (2018) for details of the BMPS optimization
procedure.
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Appendix B

Identification of Resource-Rational Decision Strategies

We took a data-driven approach to discovering heuristic click
sequences by applying the k-means clustering algorithm to vectors of
click sequences. Here, we show the correspondence between cluster
labels and heuristic strategies, which are independently defined.

We used k = 4 clusters for the model and k = 5 for participants, to
account for the large portion of random gambling in participants,
which does not occur in the model. Here, we show centroids from
running k-means clustering with values of k ranging from 1 to 12.

Figure B1
Confusion Matrices Showing Agreement Between k-Means Cluster Labels and Strategy Definitions for the
Resource-Rational Model (Left) and Participant Trials (Right) in Experiment 1

Note. Annotations show the percentage of total trials accounted for by each strategy pair, with colors indicating the trial count.
Cohen’s κ = 0.572, 95% CI [0.571, 0.572] for the model, and κ = 0.572, 95% CI [0.571, 0.572] for participants. TTB = take-the-
best; SAT-TTB = satisficing-TTB. See the online article for the color version of this figure.
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Figure B2
k-Means Clustering Results for Model Data in Experiment 1

Note. Each row shows the cluster centroid(s) with a number of clusters, k, ranging from 1 to 12. Columns are organized by least
to most average information gathering (clicks) per cluster, with subplot titles indicating the percentage of all trial vectors
belonging to that cluster. After k = 4 clusters, the centroid patterns become largely redundant. prob.= probability. See the online
article for the color version of this figure.

(Appendices continue)
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Appendix C

Trial-Level Analysis

To assess the extent to which individual participants’ information-
gathering behavior corresponds to the model in a more fine-grained
way, we measured the similarity between participant and model click
patterns on individual trials. For each participant trial, we computed
the number of clicks that differed between the participant’s click
vector (identical to that used for k-means clustering, as described
previously) and the model’s click vectors for the same trial. As
described previously, we ran 1,000 model simulations for each
participant trial since the model may display somewhat different
behavior for the same trial. Therefore, for each participant trial, we
took the average difference between the participant click vector and
all 1,000model click vectors for that trial.We then averaged this trial-

specific difference across all 20 experiment trials for each participant.
We then conducted a permutation test to see how many participants
showed trial-level behavior that was significantly sensitive to the
environment/problem structure in the manner predicted by the model.
For each participant, we constructed a null-hypothesis distribution by
sampling 1,000 “permuted” differences, computing the average
difference in the same way but permuting the model’s click vectors
such that each participant vector was matched to a model vector from
some other trial (which could have been seen by a different
participant). We found that 66.8% of participants were significantly
(p < .05) more consistent with the trial-matched model than with the
permuted (trial-mismatched) model.

Figure B3
Same as the Previous Figure but With Participant Data From Experiment 1

Note. prob. = probability. See the online article for the color version of this figure.

(Appendices continue)
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Appendix D

Comparison of Strategies Across Environments

This appendix provides additional details to accompany the
sections titled Comparison of Strategies Across Environments for
each experiment.

Experiment 1

We inspected how participants adapted their strategy use frequency
to the structure of the environment. Figure 4 shows the main effect of
each of the three parameters of the environment (stakes, dispersion,
and cost) on strategy use frequency for the model and participants;
the figures in this section show strategy use frequencies in all 50
environments (with TwoLevels of Stakes×FiveLevels ofDispersion×
Five Levels of Cost). They illustrate the overall qualitative correspon-
dence between the model and participants in the adaptive application
of strategies according to the statistics of the environment.

Figure 4 in the main text shows the four main strategies identified,
omitting randomgambling and other strategies and other, unidentified
patterns of clicking. Figures D3 and D4 below show strategy
frequencies that include random gambling, and both random
gambling and unidentified patterns of clicking, respectively.

Experiment 2

To facilitate comparison with Experiment 1 (Figure 4) in the main
text, Figure 11 is conditioned on the same four strategies (i.e.,
omitting random gambling and unidentified patterns of clicking).
Figure D5 includes random gambling to illustrate how much this
decreased in the experimental group compared to the control group.
Figure D6 includes all trials.

Figure D1
Frequency of SAT-TTB (Left Panels) and Targeted Search (Right Panels) Across All 50 Experimental Conditions,
for the Model (Top Panels), Participants (Middle Panels), and a Comparison Between the Model and
Participants (Bottom Panels) From Experiment 1

Note. The decision environment in each condition is defined by three parameters: σ (variance in potential reward received),
α−1 (homogeneity of the outcome distribution), and λ (number of points deducted for each piece of information gathered). The
results here accompany the results shown in Figure 4. Targeted search and SAT-TTB are two strategies discovered using our
resource-rational method. TTB = take-the-best; SAT-TTB = satisficing-TTB. See the online article for the color version of this
figure.

(Appendices continue)
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Figure D2
TTB (Left Panels) and Exhaustive Search (Right Panels) Strategy Use Frequencies Across All 50 Conditions in
the Experiment, for theModel (Top Panels), Participants (Middle Panels), and a Comparison Between theModel
and Participants (Bottom Panels) From Experiment 1

Note. TTB andWADD (similar to exhaustive search) are two known heuristics that our resource-rational model rediscovered.
The decision environment in each condition is defined by three parameters: σ (variance in potential reward received), α−1

(homogeneity of the outcome distribution), and λ (number of points deducted for each piece of information gathered). This
figure corresponds to Figure 4, which shows frequencies for each parameter, collapsed across all others. TTB = take-the-best;
WADD = weighted additive. See the online article for the color version of this figure.

Table D1
Statistical Results Accompanying Figure 4 From Experiment 1

Strategy Independent variable Significant post hoc comparison Effect size (Cohen’s d)

SAT-TTB Stakes n/a 0.11
SAT-TTB+ Stakes n/a −0.09
TTB Dispersion All pairs −0.089, −0.048, −0.083, −0.23
Random Dispersion All pairs 0.12, 0.051, 0.11, 0.037
SAT-TTB+ Cost All pairs 0.045, 0.084, 0.078, 0.13
TTB Cost All pairs except 0 and 8 −0.21, 0.047, 0.13, 0.063
SAT-TTB Cost All pairs −0.27, −0.078, −0.16, −0.089

Note. Summary of statistical results accompanying the analyses reported in the section Comparison of Strategies
Across Environments and shown in Figure 4 from Experiment 1. When applicable, post hoc pairwise comparisons
were conducted between all 10 pairs of levels of each independent variable using the Benjamini–Hochberg false
discovery rate procedure. This test was not applicable (n/a) when the independent variable had only two levels. The
effect sizes for these comparisons were calculated using Cohen’s d and are presented in ascending order of the
corresponding levels of the independent variable (reporting adjacent pairs only). TTB = take-the-best; SAT-TTB =
satisficing-TTB.

(Appendices continue)
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Figure D3
Same as Figure 4 in the Main Text, but Including Trials in Which No Information Was Gathered

Note. TTB = take-the-best; SAT-TTB = satisficing-TTB. See the online article for the color version of this figure.

Figure D4
Same as the Previous Figure but Also Including Unidentified Patterns of Clicking

Note. TTB = take-the-best; SAT-TTB = satisficing-TTB. See the online article for the color version of this figure.

(Appendices continue)
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Figure D5
Reducing Implicit Costs Increases the Use of Costly Strategies and Reduces Random Gambling for
Participants in the Experimental Group in Experiment 2

Note. Compare with Figure 11, which omits random gambling. TTB = take-the-best; SAT-TTB = satisficing-
TTB. See the online article for the color version of this figure.

Figure D6
Same as the Previous Figure but Also Including Unidentified Patterns of Clicking From
Experiment 2

Note. TTB = take-the-best; SAT-TTB = satisficing-TTB. See the online article for the color version of this
figure.

(Appendices continue)
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Appendix E

Rational Strategy Selection Explains Variability in Choice Behavior

This appendix provides additional figures and statistical results to
accompany the sections Understanding Variability in Choice
Behavior for Experiment 1 and Information Gathering and Choice
Behavior for Experiment 2.

Experiment 1

Having shown that human participants use the same strategies as
the resource-rational model, and adapt them to the environment in
much the same way as the model, we next tested theoretical
predictions about how four different behavioral characteristics ought
to vary with the structure of the environment. The first two are the
amount of information gathered and the relative frequency of
alternative- versus attribute-based processing. Figure 5 displays the
main effect of each of the three parameters of the decision
environment on each of these variables. Figure E1 displays these
two variables in all 50 environmental conditions. Figures E2 and E3
show the alternative variance and attribute variance. In all cases,
participants show a correspondence to the theoretical predictions of
the model as to how these behavioral markers should adapt to the
environment. See the Rational Strategy Selection Explains
Variability in Choice Behavior subsection in the Results section
of themain text for details on how these measurements were defined.
Table E1 summarizes statistical analyses accompanying those

presented in the main text, corresponding to Figures 5, 6, and E2. A
two-sample t test was used to calculate the effect of stakes on the
dependent variables. One-way analyses of variance were run to
assess the effects of dispersion and cost. Post hoc pairwise
comparisons were conducted between all 10 pairs of levels of each
independent variable using two-sample t tests with the Tukey’s
honestly significant difference correction for multiple comparisons.
The effect sizes for these comparisons were calculated using
Cohen’s d.

Experiment 2

In Experiment 2, we inspected the same three information
processing features as in Experiment 1: relative alternative- versus
attribute-based processing, attribute variance in information gather-
ing, and alternative variance in information processing. As shown in
Figure E4, the pattern of results reflects the overall increase in
information gathering in the experimental group: decreased attribute
variance and alternative variance (Figure E4B and E4C) and less
relative emphasis on attribute processing over alternative processing
(which is a result of collecting more information since there are more
alternatives than attributes; Figure E4A). The statistical results of
comparing thesemeasurements across the experimental group and the
control group are summarized in Table E2, and similar results
comparing these measurements between the model and each group
are presented in Table E3, showing that for some measures, the
behavior of participants in the experimental group became more
similar to the model than that of the control group.

High Dispersion Leads to Attribute-Based Processing

Outcome dispersion is an important determinant of information
gathering and strategy selection, with high dispersion favoring
attribute-based processing since one attribute is much more likely
than others. Figure 12 shows that information gathering decreases
with dispersion for the experimental group but increases with
dispersion for the control group, and these contrasting patterns can
be seen clearly in Figure E6A. We performed a follow-up
exploratory analysis to see if this pattern is consistent with the
model. The model does indeed predict a two-way interaction
between dispersion and cost on information gathering, whereby
information gathering decreases with dispersion at low cost but
increases with dispersion at high costs. This makes sense intuitively:
When the cost of clicking is low, then lower dispersion merits more
clicking since the most likely attribute is less informative on
average, but when the cost of clicking is high, then higher dispersion
allows more frugal clicking that focuses on the most likely attribute.
As predicted by the model, when the cost of clicking is low,
participants in the experimental group click more with low
dispersion, t(99) = 3.19, p = .0019, d = .63, but unlike the model,
for high cost, participants in this group click slightly less with high
dispersion, t(95) = 0.40, p = .69, d = 0.08. The opposite pattern
holds for the control group: clicking increases with dispersion for
both high cost, as predicted by the model, t(99)= 2.32, p= .022, d=
46, and low cost, unlike the model, t(103) = 0.63, p = .53, d = 0.12.

In both groups, these seemingly contradictory results are, in fact,
consistent with participants moving toward single attribute-based
processing as dispersion increases (as in TTB, which gathers exactly
six samples of information, corresponding to the dashed line in
Figure E6A). For participants in the experimental group who gather
too much information at high cost, information gathering ought to
decrease with dispersion, whereas for participants in the control
group who gather too little information at low cost, information
gathering ought to increase with dispersion. These same predictions
can be tested using data from Experiment 1, with five levels of
dispersion and cost. As shown in Figure E6B, both the model and
participants do indeed display the predicted pattern of results:
information gathering shifts toward single attribute processing as
dispersion increases, regardless of cost. Rather, the absolute level of
information gathering (around six clicks, dashed line) determines
the point of reversal in the two-way interaction between dispersion
and cost on information gathering. Figure E5 illustrates the same
results on a 3D surface.

The same interaction between dispersion and cost for each group
in Experiment 2 can be observed for strategy frequencies (Figure 11)
and information processing patterns (Figure E4). While participants
tend to underperform due to, in part, too little information gathering
(in the control group) or too much information gathering (in the
experimental group), the overall pattern of how they adapt their
information processing to dispersion and cost is broadly consistent
with the model’s predictions.

(Appendices continue)
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Figure E1
Information-Gathering (MeasuredWith Clicks; Left Panels) and Attribute- Versus Alternative-Based Processing
(Right Panels) Shown Across All 50 Conditions of Experiment 1, for the Model (Top Row), Human Participants
(Middle Row), and a Comparison Between the Model and Participants (Bottom Row)

Note. The 50 conditions vary in three parameters for a 2 × 5 × 5 across-participant design: reward stakes (σ), uniformity of
outcome probabilities (α−1), and the cost per click (λ). The results here accompany the behavioral results shown in Figure 5.
Within each parameter value in Figure 5, results are averaged across all values of other parameters, whereas in this figure, the
full results for each of the 50 conditions are shown. See the Rational Strategy Selection Explains Variability in Choice Behavior
subsection in the Results section of the main text for details on how alternative- versus attribute-based processing was
measured. See the online article for the color version of this figure.

Figure E2
Behavioral Correspondence Between Participants and the Resource-Rational Model From Experiment 1

Note. Attribute variance (top panels) and alternative variance (bottom panels) for the resource-rational model and human participants
vary across the three parameters of the experiment: σ (reward stakes), α−1 (dispersion of outcome probabilities), and λ (cost per click).
Error bars show the 95% confidence interval across participants. See the online article for the color version of this figure.

(Appendices continue)
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Figure E3
Alternative and Attribute Variances for All 50 Conditions in From Experiment 1 (All Combinations of σ, α−1, and
λ), for the Model (Top Panels), Participants (Middle Panels), and Difference Between the Two (Bottom Panels)

Note. The results here accompany the behavioral results shown in Figure 5. Within each parameter value in Figure 5, results
are averaged across all values of other parameters, whereas in this figure, the full results for each of the 50 conditions are shown.
See the online article for the color version of this figure.

Table E1
Statistical Results Accompanying Figures 5 and E2 From Experiment 1

Behavioral feature
Independent
variable Main effect Significant post hoc comparison Effect size (Cohen’s d)

Information gathering Stakes t(2366) = −2.61, p = .009 n/a −0.11
Information gathering Dispersion F(4, 2363) = 1.22, p = .3 n/a 0.064, 0.0012, −0.036, 0.11
Information gathering Cost F(4, 2363) = 293.83, p < .001 All pairs except 2 and 4, 4 and 8 1.0, 0.32, 0.25, 0.29
Alternative versus attribute Stakes t(2131) = −2.28, p = .022 n/a −0.099
Alternative versus attribute Dispersion F(4, 2128) = 27.97, p < .001 All pairs except 10−1.0 and 10−0.5,

100.0 and 100.5
0.16, 0.2, 0.092, 0.23

Alternative versus attribute Cost F(4, 2128) = 31.44, p < .001 0 and 1, 0 and 2, 0 and 4, 0 and 8 0.52, 0.048, −0.012, 0.12
Attribute variance Stakes t(2195) = 3.89, p < .001 n/a 0.17
Attribute variance Dispersion F(4, 2192) = 24.74, p < .001 All pairs except 10−0.5 and 100.0,

100.0 and 100.5
−0.18, −0.1, −0.11, −0.26

Attribute variance Cost F(4, 2192) = 121.75, p < .001 All pairs except 2 and 4, 4 and 8 −0.78, −0.2, −0.095, −0.19
Alternative variance Stakes t(2195) = 2.93, p = .0035 n/a 0.12
Alternative variance Dispersion F(4, 2192) = 8.43, p < .001 10−1.0 and 100.5, 10−1.0 and 101.0,

10−0.5 and 100.5, 10−0.5 and 101.0
−0.023, 0.14, 0.13, 0.057

Alternative variance Cost F(4, 2192) = 115.01, p < .001 All pairs −0.7, −0.24, −0.19, −0.26

Note. Summary of statistical results corresponding to the analyses shown in Figures 5 and E2 from Experiment 1. A two-sample t test was used to test
the main effect of stakes on the dependent variables. Analyses of variance were used to assess the main effects of dispersion and cost. When applicable,
post hoc pairwise comparisons were conducted between all 10 pairs of levels of each independent variable using two-sample t tests with the Tukey’s
honestly significant difference correction for multiple comparisons. These tests were not applicable (n/a) when the independent variable had only two levels
or its main effect was not significant. The effect sizes for these comparisons were calculated using Cohen’s d and are presented in ascending order of the
corresponding levels of the independent variable (reporting adjacent pairs only).

(Appendices continue)
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Table E2
Statistical Results Accompanying Figure E4 From Experiment 2

Behavioral feature Condition (dispersion, cost) t statistic p value Effect size (Cohen’s d)

Processing pattern α−1 = 10−0.5, λ = 1 t(90) = 1.39 p = .17 d = 0.29
Processing pattern α−1 = 100.5, λ = 1 t(95) = −1.37 p = .17 d = −0.28
Processing pattern α−1 = 10−0.5, λ = 4 t(85) = 2.94 p = .0042 d = 0.64
Processing pattern α−1 = 100.5, λ = 4 t(86) = 3.43 p = .001 d = 0.73
Attribute variance α−1 = 10−0.5, λ = 1 t(92) = −3.23 p = .0017 d = −0.67
Attribute variance α−1 = 100.5, λ = 1 t(96) = −0.94 p = .35 d = −0.19
Attribute variance α−1 = 10−0.5, λ = 4 t(88) = −3.16 p = .0021 d = −0.67
Attribute variance α−1 = 100.5, λ = 4 t(90) = −3.73 p = .001 d = −0.78
Alternative variance α−1 = 10−0.5, λ = 1 t(92) = −2.24 p = .027 d = −0.46
Alternative variance α−1 = 100.5, λ = 1 t(96) = −2.02 p = .046 d = −0.41
Alternative variance α−1 = 10−0.5, λ = 4 t(88) = −2.21 p = .03 d = −0.47
Alternative variance α−1 = 100.5, λ = 4 t(90) = −3.54 p = .001 d = −0.74

Note. Summary of comparisons between the experimental group and the control group for the behavioral measures
shown in Figure E4 from Experiment 2.

Table E3
Statistical Results Accompanying Figure E4 From Experiment 2

Behavioral feature Condition (dispersion, cost) t statistic p value Effect size (Cohen’s d)

Processing pattern α−1 = 10−0.5, λ = 1 t(90) = 0.94 p = .35 d = 0.20
Processing pattern α−1 = 100.5, λ = 1 t(95) = −1.50 p = .14 d = −0.31
Processing pattern α−1 = 10−0.5, λ = 4 t(85) = 2.74 p = .0076 d = 0.59
Processing pattern α−1 = 100.5, λ = 4 t(86) = 2.91 p = .0046 d = 0.62
Attribute variance α−1 = 10−0.5, λ = 1 t(92) = −1.25 p = .21 d = −0.26
Attribute variance α−1 = 100.5, λ = 1 t(96) = −0.56 p = .58 d = −0.11
Attribute variance α−1 = 10−0.5, λ = 4 t(88) = 2.83 p = .0058 d = 0.60
Attribute variance α−1 = 100.5, λ = 4 t(90) = 1.30 p = .2 d = 0.27
Alternative variance α−1 = 10−0.5, λ = 1 t(92) = −1.81 p = .073 d = −0.37
Alternative variance α−1 = 100.5, λ = 1 t(96) = −2.08 p = .04 d = −0.42
Alternative variance α−1 = 10−0.5, λ = 4 t(88) = 0.03 p = .97 d = 0.01
Alternative variance α−1 = 100.5, λ = 4 t(90) = −3.11 p = .0025 d = −0.65

Note. Summary of comparisons between each group and the model for the behavioral measures shown in Figure E4
from Experiment 2. That is, these statistics report the comparison between groups of each group’s absolute deviation
from the model, for each dependent variable.

(Appendices continue)
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Figure E4
Behavioral Features of Information Processing From Experiment 2

Note. (A) Consistent with their overuse of exhaustive search, participants in the experimental condition showed an increase
in alternative versus attribute processing (with negative values indicating relatively more attribute-based processing).
(B) Participants in the experimental group showed less overall variance in attribute processing, indicating more use of
compensatory strategies that focus on multiple attributes. (C) The same participants showed decreased alternative variance,
consistent with increased information gathering evenly across alternatives. LD = low dispersion; HD = high dispersion; LC =
low cost; HC = high cost. See the online article for the color version of this figure.
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Figure E5
Interaction Between Cost and Dispersion on Information Gathering

Note. This figure offers a 3D perspective on Figure E6, showing that information gathering decreases
with stakes for low cost but increases with stakes for high cost. This includes the low-stakes condition
only from Experiment 1, for comparison with Experiment 2. See the online article for the color version
of this figure.

Figure E6
Interaction Between Cost and Dispersion on Information Gathering

Note. (A) The model predicts a two-way interaction whereby information gathering decreases with
dispersion at low cost but increases with dispersion at high cost. The same interaction is observed
between, but not within, groups in Experiment 2. The inflection point of the interaction appears to be
the absolute level of information gathering, centered around six clicks (corresponding to TTB-like
attribute-based processing; dashed line). (B) The same predictions are validated in Experiment 1, with
information gathering converging toward six clicks as dispersion increases, regardless of the cost of
clicking. Experiment 1 data are for the low-stakes condition only, to facilitate comparison with
Experiment 2. Error bars show the 95% confidence interval across participants. TTB = take-the-best;
exp. = experimental. See the online article for the color version of this figure.
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Appendix F

Decision Quality and Sources of Underperformance

This appendix provides additional details to accompany the
sections on Decision Quality and Sources of Underperformance for
each experiment in the main text.

Experiment 1

Performance

Here, we provide additional statistical results and figures that
show decision quality when excluding low-effort participants and
across all 50 conditions. Because group underperformance may be
driven by low-effort participants who simply do not perform the
task, we measured decision quality after excluding participants who
gambled randomly on more than half of all trials (n = 394 or 16.6%
of participants). As illustrated in Figure F1, the average decision
quality of the remaining participants was 0.643, suggesting that the
relatively low performance could not be fully (or even mostly)
explained by low-effort participants (compare to Figure 6). The
model’s decision quality on the trials of attentive participants
(0.907) was very similar to its decision quality on the trials of all
participants. This suggests that at least 26% of the gap between
attentive participants’ performance and the performance of the
unboundedly optimal decision strategy is due to people’s sensitivity
to click costs (which we use as a proxy for limited cognitive
resources and opportunity costs), whereas at most 74% are due to
people’s deviations from resource-rational decision making. These
numbers are only a lower/upper bound because future improve-
ments to our resource-rational model, such as taking into account
that people’s utility function may be nonlinear (Kahneman &
Tversky, 1979), or the experimental paradigm (see Experiment 2)
could further increase the proportion of people’s underperformance
that the model can explain.
For attentive participants, we observed a similar pattern of

changes across stakes, dispersion, and cost, as we did for all
participants: B = 0.029, p = .0096, B = 0.05, p < .001, and B =
−0.046, p < .001, respectively.

Sources of Underperformance

Here, we present the same results presented in the section on
Sources of Underperformance for Experiment 1, but excluding low-
effort participants who gambled randomly on more than half of all
trials.
Figure F1 shows that, when excluding low-effort participants, the

remaining participants achieved 70.9% of the gross performance of
the model, which corresponds to 24.1 fewer points per trial on
average. To account for this discrepancy, wemeasured four sources of
underperformance: implicit costs of information gathering, imperfect
use of the gathered information, imperfect strategy selection, and
imperfect strategy execution. As shown in Figure F4, participants
achieved 70.6% (95% CI [68.3, 71.2]) of the net performance of the
model, with the four sources of underperformance, respectively,

accounting for 4.2%, 4.7%, 14.6%, and 5.9% of the remaining 29.4%
performance gap.

We estimated the implicit cost of information gathering as before,
to control for the amount of information collected by participants and
the model, resulting in an implicit cost of clicking of 1.5 points per
click when excluding participants, and a 4.2% reduction in model
performance (Figure F4). Notably, the contribution from random
gambling drops considerably to 2.5%, and the overall contribution of
imperfect strategy selection drops to 14.6% when excluding
participants, which is still higher than the contributions of the other
three sources of underperformance, but not as high as without
participant exclusions (compare to Figure 7). Figures F4 and F5 show
the same analyses presented in Figures 7 and 8, respectively, when
excluding participants.

Experiment 2

Performance

Participants in the experimental group on average showed worse
imperfect use of information than participants in the control group
(see Figure 14), which indicates that not all participants were
performing the task, since they were given the exact values to make
perfect use of information (i.e., the subjective expected value of each
gamble, see Figure 9). This is actually not surprising, considering
that, in Experiment 1, 16.6% of participants gambled randomly
(without gathering information) on more than half of all trials; in
Experiment 2, participants were forced to wait for 20 s before
gambling and therefore did not have the option to immediately
gamble randomly, as they would in Experiment 1 or in the control
group. To remove poor performers from both groups, we first
computed the fraction of participants in the control group who
gambled randomly on more than half of all trials (27.2%), to find
comparable levels of poor performers across experiments (since the
tasks were identical in Experiment 1 and the control group in
Experiment 2). We then used this value to remove the bottom 27.2%
of performers from each group in Experiment 2, but since the
fraction of trials with random gambling is no longer a valid metric,
we simply excluded participants based on their net performance as a
fraction of the model’s net performance. Figure F6 shows that
attentive participants in the experimental group outperformed
attentive participants in the control group in every condition, LD-
LC: t(55)= 2.36, p= .022, d= 0.63; LD-HC: t(80)= 4.02, p= .001,
d = 0.90; HD-LC: t(78) = 2.26, p = .027, d = 0.51; HD-HC: t(73) =
2.30, p = .024, d = 0.53.

Sources of Underperformance

We computed the same four sources of underperformance after
excluding low-effort participants from both groups. These results
are shown in Figures F7 and F8. The fit implicit cost of gathering
information was 0.2 and 1.9 points per click for the experimental
group and the control group, respectively.
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Table F1
Statistical Results Accompanying Figure 6 From Experiment 1

Behavioral feature
Independent
variable Main effect Significant post hoc comparison Effect size (Cohen’s d)

Relative performance Stakes t(2366) = −2.92, p = .0036 n/a −0.12
Relative performance Dispersion F(4, 2363) = 42.76, p < .001 All pairs except 10−0.5 and 100.0 −0.22, −0.11, −0.24, −0.19
Relative performance Cost F(4, 2363) = 50.48, p < .001 All pairs except 1 and 2, 2 and 4 0.36, 0.16, 0.13, 0.2
Relative performance
(with exclusions)

Stakes t(1972) = −2.59, p = .0096 n/a −0.12

Relative performance
(with exclusions)

Dispersion F(4, 1969) = 43.29, p < .001 All pairs except 10−0.5 and 100.0 −0.23, −0.17, −0.22, −0.22

Relative performance
(with exclusions)

Cost F(4, 1969) = 38.00, p < .001 All pairs except 1 and 2, 2 and 4 0.3, 0.14, 0.13, 0.26

Note. Summary of statistical results corresponding to the analyses shown in Figure 6 from Experiment 1. A two-sample t test was used to test the main
effect of stakes. Analyses of variance were used to assess the main effects of dispersion and cost. When applicable, post hoc pairwise comparisons were
conducted between all 10 pairs of levels of each independent variable using two-sample t tests with Tukey’s correction for multiple comparisons. These
tests were not applicable (n/a) when the independent variable had only two levels or its main effect was not significant. The effect sizes for these
comparisons were calculated using Cohen’s d and are presented in ascending order of the corresponding levels of the independent variable (reporting
adjacent pairs only).

Figure F1
Performance When Excluding Participants Who Gamble Randomly on More Than Half of All Trials From
Experiment 1

Note. Performance was measured as the relative reward earned on each trial (the fraction of the highest possible reward with
perfect information, omitting click costs). Error bars show the 95% confidence interval across participants. See the online article
for the color version of this figure.
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Figure F2
Decision Quality (Left Panels) and Decision Quality for the Model With an Implicit Cost of Clicking (Right
Panels) Shown Across All 50 Conditions of Experiment 1, for the Model (Top Row), Human Participants (Middle
Row), and the Difference Between the Model and Participants (Bottom Row)

Note. The 50 conditions vary three parameters for a 2 × 5 × 5 across-participant design: σ (reward stakes), α−1 (uniformity of
outcome probabilities), and λ (cost per click). The results here accompany the behavioral results shown in Figure 6. Within each
parameter value in Figure F8, results are averaged across all values of other parameters, whereas in this figure, the full results for
each of the 50 conditions are shown. See the online article for the color version of this figure.
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Figure F3
Same as Figure F2, but Excluding Participants Who Gambled Randomly on More Than Half of All Trials (n =
394 of 2,368 Participants Total) From Experiment 1

Note. See the online article for the color version of this figure.
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Figure F4
Sources of Underperformance When Excluding Low-Effort Participants From
Experiment 1

Note. Participants’ net performance was 70.6% (95% CI [68.3, 71.2]) that of the model,
with four distinct sources of the remaining 29.4% gap depicted here. TTB = take-the-best;
SAT-TTB = satisficing-TTB. See the online article for the color version of this figure.
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Figure F5
Sources of Imperfect Strategy Selection and Execution When Excluding Low-Effort
Participants From Experiment 1

Note. Each cell states participants’ average reduction of net performance from a trial-wise
comparison of model–participant strategy selection. Off-diagonal cells correspond to
imperfect strategy selection, while on-diagonal values correspond to imperfect strategy
execution. Colors correspond to the number of trial-wise model–participant strategy pairs.
See Figure 8 for details. TTB = take-the-best; SAT-TTB = satisficing-TTB. See the online
article for the color version of this figure.
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Figure F6
Performance Across Conditions for Each Group in Experiment 2 When Excluding
Low-Effort Participants

Note. Net relative performance, which accounts for the cost of gathering information, shows
that participants in the experimental condition performed significantly better than participants in
the control group in every condition. Error bars show 95% confidence interval across
participants. LD = low dispersion; HD = high dispersion; LC = low cost; HC = high cost. See
the online article for the color version of this figure.
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Figure F7
Same Results as Figure 14 From Experiment 2, but Excluding Low-Effort Participants

Note. Overall performance was 76.4% (95%CI [68.6, 80.4]) and 88.1% (95%CI [82.1, 91.8]) for the control group and experimental
group, respectively. TTB = take-the-best; SAT-TTB = satisficing-TTB. See the online article for the color version of this figure.

Figure F8
Same Results as Figure 15 From Experiment 2, but Excluding Participants Who Did Not Perform the Task Correctly

Note. TTB = take-the-best; SAT-TTB = satisficing-TTB. See the online article for the color version of this figure.
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