
IDENTIFYING RESOURCE-RATIONAL HEURISTICS 1

Identifying Resource-Rational Heuristics for Risky Choice

Paul M. Krueger1,a, Frederick Callaway2,a, Sayan Gul3,

Thomas L. Griffiths1,2,b, and Falk Lieder4,b

1Department of Computer Science, Princeton University
2Department of Psychology, Princeton University

3Department of Psychology, University of California, Berkeley
4Max Planck Institute for Intelligent Systems, Tübingen, Germany



IDENTIFYING RESOURCE-RATIONAL HEURISTICS 2

Author Note

Correspondence concerning this article should be addressed to Paul M. Krueger,

Department of Computer Science, Princeton University, 35 Olden St., Princeton, NJ 08540.

E-mail: paul.m.krueger@gmail.com. aPMK and FC contributed equally to this work.
bTLG and FL share joint senior authorship on this article. Preliminary versions of the

method and experiment were presented at the 39th Annual Meeting of the Cognitive

Science Society, the 3rd Multidisciplinary Conference on Reinforcement Learning and

Decision Making, and the 14th Biannual Conference of the German Society for Cognitive

Science, GK. This material has been substantially revised and expanded for the present

article. This work was supported by grant number MURI N00014-13-1-0341 from the

Office of Naval Research, grant number FA9550-18-1-0077 from the Air Force Office of

Scientific Research and grants from the Templeton World Charity Foundation and NOMIS

Foundation to Thomas L. Griffiths. The authors declare no conflict of interest. All code

and data used to run the experiments and produce the results presented in this paper are

available at https://github.com/fredcallaway/rational-heuristics-risky-choice/.

https://github.com/fredcallaway/rational-heuristics-risky-choice/


IDENTIFYING RESOURCE-RATIONAL HEURISTICS 3

Abstract

Perfectly rational decision-making is almost always out of reach for people because their

computational resources are limited. Instead, people may rely on computationally frugal

heuristics that usually yield good outcomes. Although previous research has identified

many such heuristics, discovering good heuristics and predicting when they will be used

remains challenging. Here, we present a theoretical framework that allows us to use

methods from machine learning to automatically derive the best heuristic to use in any

given situation by considering how to make the best use of limited cognitive resources. To

demonstrate the generalizability and accuracy of our method, we compare the heuristics it

discovers against those used by people across a wide range of multi-attribute risky choice

environments in a behavioral experiment that is an order of magnitude larger than any

previous experiments of its type. Our method rediscovered known heuristics, identifying

them as rational strategies for specific environments, and discovered novel heuristics that

had been previously overlooked. Our results show that people adapt their decision

strategies to the structure of the environment and generally make good use of their limited

cognitive resources, although their strategy choices do not always fully exploit the structure

of the environment.

Keywords: Decision-Making, Heuristics, Risky Choice, Bounded Rationality,

Strategy Discovery
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Identifying Resource-Rational Heuristics for Risky Choice

We make thousands of decisions every day. Collectively, these decisions determine

our personal lives and the success of companies and organizations, and they also shape the

economy and society as a whole. However, making good decisions is a challenging

computational problem for people and artificial intelligences alike (Bossaerts & Murawski,

2017; Bossaerts et al., 2019; Gershman et al., 2015; Kwisthout et al., 2011; Nowozin, 2014;

Papadimitriou & Tsitsiklis, 1986). According to classic economic theory, people should

choose their actions so as to maximize the expected value of the consequences

(Morgenstern & Von Neumann, 1953; Savage, 1951), but computing those expected values

for real-world problems is a substantial task and humans face significant limitations in

computational resources and time (Simon, 1972). As a result, most real-world decisions are

too complex for people to apply those economic principles correctly. Instead, people have

to rely on heuristics to simplify decision-making (Gardner, 2019; Gigerenzer & Goldstein,

1999; Gilovich et al., 2002; Kahneman et al., 1982; Maule & Hodgkinson, 2002).

Despite the ubiquity of heuristics (and resulting biases) in decision-making,

identifying which heuristics people use and when they use them can be a challenge.

Psychologists identify heuristics by thinking about the structure of decision environments

and observing human behavior, but this process of discovery is slow and requires both luck

and ingenuity. This makes discovering good heuristics a critical bottleneck to

understanding and improving human decision-making. Furthermore, while many specific

heuristics have been identified, there is no general method that could be used to predict

which heuristics will be used in novel situations.

In this article, we address these problems by proposing a theoretical framework that

can be used to automatically derive optimal heuristics. This approach relies on the idea

that people’s heuristics may arise as a rational adaptation to the structure of the

environment and the cognitive constraints of limited time and computational resources

(Frank, 2013; Griffiths et al., 2015; Griffiths et al., 2012; Lewis et al., 2014; Lieder &
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Griffiths, 2020; Simon, 1956, 1972; Zednik & Jäkel, 2016) – a normative benchmark that

we refer to as “resource rationality” (Griffiths et al., 2015; Lieder & Griffiths, 2020).

Resource rationality is achieved through an optimal trade-off between decision quality and

computational cost. This trade-off also arises in machines, and can be formalized using

ideas from the artificial intelligence literature (Russell & Wefald, 1991b). Specifically,

heuristic decision-making can itself be understood as a sequential decision problem

(Griffiths et al., 2019). At each step, people make a decision about whether to collect more

information about their options through deliberation, or simply to stop thinking and act.

Whereas classic rationality applies to the utility of decisions in the external world, and

research on heuristics and biases highlights internal cognitive limitations, the framework we

propose here bridges these two approaches by viewing rationality as a property of this

internal sequential decision process, rather than of the resulting external decisions. We

leverage recent advances in machine learning to solve this sequential decision problem,

allowing us to automatically derive optimal heuristics for any decision environment.

To demonstrate the accuracy and generalizability of our approach, we applied it to

multi-alternative, multi-attribute decision-making (Zanakis et al., 1998). The heuristics

people use to make these kinds of decisions have been extensively studied in the Mouselab

paradigm for multi-alternative risky choice, where participants choose between multiple

gambles whose payoffs depend on a random outcome (Payne et al., 1988, Figure 1).

Participants are shown the probability of each outcome and a payoff matrix with one

column for each gamble and one row for each outcome. The entry in column g and row o

indicates how much money gamble g pays if the outcome o occurs. Critically, all payoffs

are initially occluded, and the player can reveal outcomes by clicking on them one-by-one.

Thus, the sequence of clicks a player makes traces their decision strategy. To operationalize

the cost of gathering information, participants are charged a fixed fee for every click; thus,

to maximize earnings, the player must employ a decision strategy that achieves an optimal

trade-off between the cost of information gathering versus the value of information.
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Figure 1
Illustration of the Mouselab paradigm (Payne et al., 1988). The task is to choose one of six
gambles, each of which results in one of four probabilistic outcomes; before gambling,
participants can gather information about the value of each cell by clicking on it. The
Mouselab paradigm externalizes computations by clicks, belief states by revealed
information, and the cost of each computation by the fee charged for the corresponding
click. This example shows a sequence of clicks generated by the Satisficing-Take-The-Best
strategy, which was discovered through our approach.

We applied our heuristic-discovery method across a large range of multi-attribute

decision-making problems and tested its predictions in an experiment that is an order of

magnitude larger than the largest previous study in this setting. Our method

automatically rediscovered the classic Take-The-Best (Gigerenzer & Goldstein, 1999) and

Weighted-Additive (Dawes & Corrigan, 1974; Payne et al., 1988) heuristics as

resource-rational strategies in specific situations, validating the approach. In addition, our

method discovered novel heuristics that had been previously overlooked. We collected data

from over 2,300 participants, systematically varying the parameters of the decision-making

environment. This allowed us to parametrically evaluate human heuristics using the

normative standard of resource-rationality. If human heuristics are selected in accordance

with this normative standard, people should adapt their strategies to the decision

environment.

Our approach correctly predicted which strategies people use and under which

environmental conditions they use them more versus less often. Comparing people’s

strategy choices against the normative standard of resource rationality indicated that
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people use resource-rational decision-making strategies, and adaptively select which

strategy to use based on the structure of the environment. However, they select and

execute these strategies imperfectly, thus falling short of perfect resource-rational

decision-making. In a follow-up experiment, we found that people continued to deviate

from resource-rational decision-making even when the task was modified such that the

assumptions of the resource-rational model were met. Our findings suggest that our

automatic strategy discovery method is a promising approach for uncovering people’s

cognitive strategies and assessing human rationality using a more realistic normative

standard.

Background

Before we introduce our approach, we briefly summarize previous work on

identifying the heuristics that people use in multi-alternative risky choice, and the

normative frameworks that have been used to account for these choices.

Manually identified heuristics

Previous work has manually identified a number of heuristics employed in

multi-attribute risky choice (Gigerenzer & Goldstein, 1996; Katsikopoulos, 2011; Payne,

1976a; Simon, 1956; Thorngate, 1980). Early research focused on additive models in which

linear combinations of payoffs are used to make a decision (Dawes & Corrigan, 1974;

Einhorn & Hogarth, 1975). For example, classical expected utility theory is implemented

by the Weighted Additive model, in which payoffs are weighted by their probabilities.1

Another widely-recognized heuristic is the lexicographic rule (Svenson, 1979; Tversky,

1969) or “Take-The-Best” (Gigerenzer & Goldstein, 1999), which focuses on a single

1 The traditional notion of expected value maximization under risky choice can be traced all the way to the
foundations of probability theory (Huygens, 1657, 1714), while the idea that people instead use subjective
utility began with Bernoulli (1738, 1954). Modern research using weighted additive models of utility
applied to risky decision-making began with Von Neumann and Morgenstern (1944), while Payne et al.
(1988) were the first to apply this benchmark to the Mouselab task. For a discussion of the origins of early
research on models of risky decision-making, see Edwards (1954).
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diagnostic attribute. Satisficing, on the other hand, focuses on one alternative at a time,

selecting it only if all of its attributes are above a certain cutoff value (Simon, 1956).

Like researchers before them, Payne et al. (1988) studied the trade-off between

cognitive effort and decision accuracy afforded by heuristics. They operationalized effort by

decomposing heuristics into units of “elementary information processes” (EIPs) (Johnson &

Payne, 1985). These basic steps of cognitive processing include operations like “read,”

“compare,” “add,” “product,” “move,” and “choose,” and this framework has its origins in

the view of human reasoners as symbolic information processing systems (Newell, Simon,

et al., 1972). Assuming every operation requires equal effort, Payne et al. (1988) reported

simulation results showing the effort-accuracy trade-off of nine different heuristics in the

Mouselab task. These heuristics included the three aforementioned, two others

(“elimination by aspects” (Tversky, 1972) and “majority confirming dimensions” (Russo &

Dosher, 1983)), and four hybrids or modified versions of the previous five. They showed

that certain heuristics require substantially less effort but that, depending on the

environment of the Mousleab task, may incur only a minimal reduction in accuracy. For

example, when one attribute is much more likely than all the others, Take-The-Best

performs nearly as well as the much more costly Weighted Additive strategy.

Payne et al. (1988) noted general characteristics in the patterns of information

processing associated with heuristics. These include the amount of information gathered

and the variance in gathering information across attributes vs. across alternatives. Rather

than measure heuristics directly, they measured these behavioral features in human

participants, which we discuss in detail later. They found that people adjust their

information processing to the environment, such that less effortful patterns are used when

the reduction in accuracy is relatively small, and when under time constraints (since less

effortful heuristics are simpler and faster).

While appreciating the effort-accuracy trade-off, Payne et al. (1988) assume that

expected value maximization is the normative standard, and that heuristics arise as a
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necessary but suboptimal adaptation to environmental variables. That is, certain heuristics

are less bad in some environments, but a limitation all the same. Their simulation results

cannot predict which heuristic ought to be used in which environment because EIPs do not

specify how much effort each operation costs. Rather, the subjective cost of even a single

EIP is ultimately a suboptimal cognitive bias. In our work, rather than assume EIPs that

have a priori unquantifiable cost, we externalize the cognitive cost of gathering information

directly, which allows us to compute precisely the optimal trade-off between effort

(operationalized as click costs) and decision accuracy. This provides a normative account of

heuristics based on the rational use of costly cognitive operations. In this framework,

heuristics can be derived automatically by optimizing the cost-accuracy trade-off, rather

than relying on subjective insight to propose or search for strategies.

Normative accounts of heuristics

Like Payne et al. (1988), other previous work has also characterized the

environments in which hand-crafted heuristics perform best, showing that people select

among these heuristics accordingly (Baucells et al., 2008; Dieckmann & Rieskamp, 2007;

Gigerenzer & Brighton, 2009; Goldstein & Gigerenzer, 2002; Katsikopoulos, 2011;

Katsikopoulos & Martignon, 2006; Martignon & Hoffrage, 2002; Martignon et al., 1999;

Şimşek, 2013). While challenging classic rationality, this work generally views heuristics as

adaptive to the environment rather than adaptive to inherent constraints on the

decision-making process itself.

Researchers have previously considered the ideal observer perspective for rational

decision-makers (Fishburn, 1989; Geisler, 1989; Howard, 1968), but such an approach was

recognized as infeasible (Bell et al., 1988; Kimball, 1958; Simon, 1990; Tversky &

Kahneman, 1974). An alternative view is to emphasize the limitations of the

decision-maker and the fact that heuristics are computationally cheaper (Payne et al.,

1988, 1993) and may achieve some trade-off between accuracy and effort (Beach &
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Mitchell, 1978; Shah & Oppenheimer, 2008) or optimization under constraints due to

information costs (Anderson, 1991; Stigler, 1961), although these perspectives typically

view heuristics as inferior to rational decisions (Keeney et al., 1993; Tversky, 1972). The

discovery that simpler regression models may outperform more complex ones (Dawes, 1979;

Dawes & Corrigan, 1974; Einhorn & Hogarth, 1975; Schmidt, 1971), combined with

observations that heuristics often work quite well in many real-world decision environments

(Chater et al., 2003; Czerlinski et al., 1999; DeMiguel et al., 2009; Gigerenzer, 2008; Lee

et al., 2002; Lichtenberg & Şimşek, 2017; Wübben & Wangenheim, 2008)—the so-called

“less-is-more” effect—challenged the classical normative view of rationality. This led to the

idea of ecological rationality (Gigerenzer & Gaissmaier, 2011; Gigerenzer & Todd, 1999;

Payne et al., 1993), and attempts to account for the effectiveness of heuristics in terms of

the structure of the decision environment (Baucells et al., 2008; Bhatia & Stewart, 2018;

Dieckmann & Rieskamp, 2007; Katsikopoulos, 2011; Katsikopoulos & Martignon, 2006;

Martignon & Hoffrage, 2002; Martignon et al., 1999; Şimşek, 2013), trading-off utility and

search costs (Analytis et al., 2014) or accuracy and time (Hawkins & Heathcote, 2021;

Jarvstad et al., 2012; Rae et al., 2014), bounded evidence accumulation (Brown et al.,

2009; Lee & Cummins, 2004), the effectiveness of reducing model parameters to balance

the bias-variance trade-off (Gigerenzer & Brighton, 2009; Holte, 1993) or when

observations are limited or noisy (Hogarth & Karelaia, 2005, 2006, 2007; Şimşek &

Buckmann, 2015), and Bayesian inference with strong priors (Parpart et al., 2018). More

recently, a resource-rational analysis of cognition has been applied to view heuristics as

making rational use of limited computational resources (Bhui et al., 2021; Binz et al., 2022;

Lieder & Griffiths, 2017; Lieder & Griffiths, 2020).

Our approach extends these previous results by automatically discovering the

best-performing heuristics by explicitly optimizing over an immense, combinatorial strategy

space defined by a set of basic cognitive operations, reminiscent of elementary information

processes (Johnson & Payne, 1985). Expressing heuristics as a rational trade-off between
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expected payoff and cognitive cost makes it possible to use methods from machine learning

to find a near-optimal policy for selecting which costly cognitive operation to perform next

given the result of previous operations. In addition to uncovering new heuristics, this

approach can establish a normative basis for heuristics that people are already known to

use. Any heuristic that our method identifies is likely to strike a near-optimal trade-off

between cognitive cost and decision quality.

Automatically deriving resource-rational heuristics

Our approach rests on the key insight that the process of making a decision can

itself be described as a sequential decision problem. At each step of this problem, the agent

chooses whether to perform some computation or to instead take the results of previous

computations and act. Stated in these terms, the problem of making a decision can be

recognized as a Markov Decision Process (MDP; see Figure 2). A decision-making strategy

(a heuristic) is then a policy for that MDP, that is, a function that selects which

computation to execute next given the results of previous computations. In the artificial

intelligence literature, this problem of choosing a sequence of computations to perform has

been formalized as a “meta-level” MDP (Hay et al., 2012), where the name acknowledges

that we are deciding how to decide.

The definition of a meta-level MDP parallels that of a conventional, or

“object-level” (Russell & Wefald, 1991a), MDP. In an object-level MDP, the environment is

represented using states that the agent can occupy, and actions that the agent can execute,

which lead to rewards and transitions to new states. The agent’s objective is to select

actions that maximize cumulative reward (Sutton & Barto, 2018). The reinforcement

learning paradigm relies on the MDP framework as a formal representation of the external

environment and has led to considerable recent advances in artificial intelligence (e.g.,

Berner et al., 2019; Hessel et al., 2018; Mnih et al., 2015; Silver et al., 2017) and success in

describing human (e.g., Cohen & Ranganath, 2007; Shteingart & Loewenstein, 2014) and
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animal (e.g., Rescorla, 1972; Sutton & Barto, 1990) behavior and brain function (e.g.,

Botvinick et al., 2009; Dayan & Daw, 2008; Glimcher, 2011; Ludvig et al., 2011; Niv, 2009;

Schultz et al., 1997).

A meta-level MDP uses the same formal framework, but instead of capturing the

external environment in which decisions take place it represents the internal environment of

the cognitive processes that underlie those decisions. As shown in Figure 2, internal states

are referred to as beliefs, b, and internal actions are described as computations, c, that can

be used to update beliefs. Because brains and machines have limited computational

resources, computations come with a cost, rmeta. In addition to making internal

computations, an agent can execute a special internal action, ⊥, that terminates

deliberation and takes the action in the external world with the highest expected value

according to their current beliefs. The agent then receives a reward from the external world

(blue nodes in Figure 2). To identify the best policy for the meta-MDP, we use methods

from reinforcement learning that are used to solve MDPs. This provides a normative

account of how a decision-maker ought to navigate the internal world of their mind. In this

way, a meta-level MDP can be used to derive cognitive strategies for decision-making.

The meta-level MDP has its origins in the artificial intelligence literature on rational

metareasoning (Hay et al., 2012; Russell & Wefald, 1991b), which is concerned with

building machines that best use their limited computational resources. Recently, however,

the approach has been applied to understand how humans efficiently use their cognitive

resources. In particular, meta-level MDPs have been used to build resource-rational models

of simple (non multi-attribute) decision-making (Callaway, Rangel, et al., 2021) as well as

planning (Callaway, Lieder, et al., 2018; Callaway, van Opheusden, et al., 2021). Here, we

apply this approach to compute resource-rational heuristics for multi-attribute risky choice

and compare them to the strategies that people use.

Our approach builds on previous work modeling heuristics in decision-making in

terms of elementary information processes (detailed above; Bettman et al., 1990; Johnson
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Figure 2
Schematic illustration of the meta-level Markov Decision Process framework applied to the
Mouselab task. At the beginning of each trial, when all cell values are hidden, the agent’s
initial belief state, b0, is represented as Gaussian distribution for each of the six gambles.
Each time the agent makes a computation, c, by clicking on a cell to gather information, it
incurs a computational cost, rmeta, and updates its belief distribution for the observed
column. When the agent is finished gathering information, it can choose to terminate
deliberation, ⊥, by selecting a gamble, at which point an action is taken in the external
world and it receives a reward (blue nodes).

& Payne, 1985; Payne et al., 1988). Like this previous work, we model the decision-making

process as a sequence of simpler cognitive operations. However, unlike previous work, we

do not manually specify how the operations should be sequenced; instead, we derive

optimal sequences automatically. That is, we pose the sequencing problem as a meta-MDP

and identify a near-optimal policy that chooses which operation to perform next given the

outcome of previous operations. This allows us to exhaustively explore the space of

heuristics, identifying those that are adaptive in specific circumstances, rather than relying

on human creativity to generate hypotheses about the heuristics people might follow.

Solving complex meta-level MDPs is a challenging computational problem whose

complexity exceeds the capacities of standard methods from reinforcement learning and

dynamic programming. To overcome this challenge, we recently developed a new

reinforcement learning algorithm that is specifically tailored to solving meta-level MDPs

called Bayesian meta-level policy search (BMPS) (Callaway, Gul, et al., 2018). Here, we

use this technical advance to discover rational heuristics for risky choice. The resulting

approach is as follows: First, we model the distribution of decision problems posed by the
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environment and the cognitive capacities the decision-maker has available to solve those

problems as a meta-level MDP. Next, we apply BMPS to solve the meta-level MDP.

Finally, we characterize this solution in terms of discrete decision strategies by applying a

clustering algorithm to the cognitive operations it performs to make its decisions.

Automatically discovering strategies for Mouselab

We set out to discover resource-rational heuristics by applying our automatic

strategy discovery method to the Mouselab task, the classic process-tracing paradigm for

multi-attribute risky choice described above. In the experimental task (illustrated in

Figure 1), participants must select from a set of six gambles with four possible outcomes.

To reveal the value of a given gamble under a given outcome, participants must click the

corresponding cell in a table, paying a cost for doing so. As illustrated in Figure 2, we

model this task as a meta-level MDP in which the belief state captures a posterior over the

value of each gamble given the currently revealed values, and computations correspond to

revealing a cell and updating the posterior accordingly. Solving this meta-MDP yields a

decision-making policy that optimally trades-off between the costs and benefits of

considering additional information.

The following sections explain how we modeled the problem of

meta-decision-making in the Mouselab paradigm as a meta-level MDP, how we solved this

problem to identify optimal strategies, and how we characterized the resulting solutions in

terms of simple heuristics.

The Mouselab paradigm

In our version of the Mouselab paradigm, the alternatives are gambles and the

attributes of each gamble are its payoffs in the event of different outcomes. The Mouselab

paradigm traces people’s decision process by recording the order in which they inspect

different pieces of information. Concretely, participants are presented with a payoff matrix

where the columns correspond to the alternatives they are choosing between and the rows
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correspond to different outcomes. Each cell in the payoff matrix specifies how much the

alternative corresponding to its column would pay (in points, which translate to a

monetary payoff) if the event corresponding to its row were to occur. Critically, all the

payoffs are initially occluded, and the participant has to click on a cell to reveal its entry.

The probabilities of the different outcomes are known to the participant. Each click comes

at a cost, and participants are free to inspect as many or as few cells as they would like.

The resource-rational model makes strong predictions about how the structure of

the environment affects the heuristics people should use. To test these predictions in a

systematic and comprehensive way, we considered a wide variety of decision environments

that varied across three parameters: 1) the “stakes” of the decision (the variance of

possible payoffs), 2) the “dispersion” of the outcome distribution (lower values resulting in

more similar probabilities for each outcome), and 3) the “cost” of computation (the

number of points subtracted for each click). We considered two levels of stakes and five

levels for dispersion and for cost, resulting in a total of 50 conditions. Each environment

was generated by sampling from a distribution specified by the corresponding condition.

The two levels of stakes determined the distribution of payoffs, with lower variation in

points for low stakes, and higher variation in points for high stakes (points drawn from

N (0, σ2) where σ ∈ {75, 150}). The five levels of dispersion determined the outcome

probabilities, with all outcomes being roughly equally likely for low dispersion, and one

outcome being much more likely than others for high dispersion (outcome probabilities

drawn from Dirichlet(α · 1) where α ∈ {10−1.0, 10−0.5, 100.0, 100.5, 101.0}). The cost of

collecting information was defined by the number of points subtracted for each click

(λ ∈ {0, 1, 2, 4, 8}).

Meta-level MDP model

Before defining our meta-level MDP model, we briefly review generic Markov

Decision Processes (MDPs; Puterman, 2014). MDPs are the standard formalism for
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modeling sequential decision problems, in which an agent iteratively interacts with an

environment to attain the largest possible sum of rewards. An (undiscounted) MDP is

defined by a four-tuple, M = S, A, T, r, where S is a set of possible environment states, A

is a set of actions that an agent can take, T is a transition function that gives the

probability of moving from state s ∈ S to state s′ conditioned on taking action a ∈ A:

T (s, a, s′), and r is a reward function describing the reward received for such a transition:

r(s, a). A reinforcement learning agent’s objective is to learn a policy, π, that maps states

onto actions so as to maximize total expected reward.

A meta-level MDP is a special case of an MDP that is used to describe the

sequential decision problem associated with making a decision, through a process of

performing computations that update the agent’s beliefs about the external world. A

meta-level MDP is defined by a four-tuple, Mmeta = B, C, Tmeta, rmeta. Here, states are

replaced by a set of beliefs, B, describing what the agent may think; actions are replaced

by a set of computations, C, describing cognitive operations the agent can perform; the

meta-level transition function, Tmeta, specifies the probability that a computation, c, made

with belief b will lead to a new belief, b′: Tmeta(b, c, b′); finally, rmeta encodes both the costs

of computation (assigning a negative reward for every computation executed) and also the

quality of the ultimate decision (assigning the expected external reward attained for the

external action that is ultimately executed; see rmeta(b, ⊥) below).

In addition to making computations, at any time, t, the meta-level agent can choose

to terminate deliberation by taking action ⊥, at which point the meta-level reward

function, rmeta, describes the reward the agent will receive for taking the object-level (that

is, external) action that has highest expected utility given the current belief; thus

rmeta(b, ⊥) = maxa Es∼b[U(s, a)] where U is the external utility function. The meta-level

agent’s objective is to learn a meta-level policy, πmeta, that maximizes the trade-off between

decision quality, rmeta(b, ⊥), and accumulated computation costs, t · λ, where t is the

number of computations executed before termination and λ is the cost of each computation.
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We model optimal heuristics for risky choice in the Mouselab paradigm as solutions

to the meta-level MDP MMouselab = (B, C, Tmeta, rmeta). Concretely, we characterize the

decision-maker’s belief state at time t by a set indicating which payoffs have already been

observed and processed (Ot) and probability distributions (bt,1, · · · , bt,n) over the expected

utilities of the available gambles, each of which is defined by

E[U(g)] =
∑

o

p(o)vo,g (1)

where vo,g is the payoff of the gamble g under outcome o (V is the payoff matrix). For each

payoff, there is one computation co,g that inspects the payoff vo,g and updates the agent’s

belief about the expected value of the inspected gamble according to Bayesian inference.

Since the entries of the payoff matrix are drawn from the Gaussian distribution N (v̄, σ2
v),

the resulting posterior distributions are also Gaussian. Hence, the decision-maker’s belief

about the expected payoff of the gth gamble is represented by

bt,g =
(
b

(µ)
t,g , b

(σ2)
t,g

)
, (2)

where b
(µ)
t,g and b

(σ2)
t,g are the mean and the variance of the probability distribution on the

expected value of gamble g given the belief state bt. Given the set

Ot = {(o(1), g(1)), · · · , (o(t), g(t))} of the indices of the t observations made so far, the means

and variances characterizing the decision-maker’s beliefs are given by

b
(µ)
t,g =

∑
o

p(o) ·


vo,g if (o, g) ∈ O

v̄ otherwise
(3)

b
(σ2)
t,g =

∑
o

p(o)2 ·


0 if (o, g) ∈ O

σ2
v otherwise.

(4)

That is, the belief about each gamble’s value is a Gaussian whose mean is the expected
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value of the gamble (with unobserved payoffs replaced by the average) and whose variance

is the probability-weighted sum of the variance induced by each unobserved payoff.

The meta-level transition function Tmeta(bt, co,g, bt+1) encodes the probability

distribution on what the updated means and variances will be given the observation of a

payoff value vo,g sampled from N (v̄, σ2
v), and is determined using Bayesian inference

integrating over the distribution of possible observed payoff values. The meta-level reward

for performing the computation co,g ∈ C encodes that acquiring and processing an

additional piece of information is costly. We assume that the cost of all such computations

is a constant λ. The meta-level reward for terminating deliberation and taking action is

rmeta(bt, ⊥) = maxg b
(µ)
t (g), since the agent will choose the action with the gamble with the

highest expected value.

Using this formalism, we can define a resource-rational heuristic h⋆ as the optimal

policy for a meta-level MDP. The optimal meta-level policy is the one that maximizes the

meta-level reward for making a decision in an well-informed belief state minus the cost of

attaining it, that is

h⋆ = arg max
πmeta

E
[∑

t

rmeta(bt, πmeta(bt))
]

(5)

= arg max
πmeta

E
[
max

g
b

(µ)
t⊥ (g) − t⊥ · λ

]
, (6)

where the random variable t⊥ is the time step in which the meta-level policy terminates

deliberation and λ is the cost of a single computation. Having redefined resource-rational

heuristics in this way now allows us to discover them by solving meta-level MDPs. To be

able to solve complex meta-level MDPs, we recently developed the Bayesian meta-level

policy search algorithm (Callaway, Gul, et al., 2018). In Appendix A we provide details of

how this algorithm can be applied to find near-optimal strategies in this model.
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Figure 3
Identification of heuristics. (A) The sequence of clicks on a given trial is converted into an
indicator matrix with uninformative spatial variation removed. Rows are rearranged from
the most to least probable outcome, and columns are rearranged in descending order of the
sum of the probabilities of the outcomes observed in that column. This matrix is then
flattened into a 24-dimensional vector. All 47, 360 such vectors from our behavioral
experiment (2,368 participants × 20 trials per participant; visualized here projected onto 2D
space via Fisher’s Linear Discriminant Analysis) serve as input to a k-means clustering
algorithm. A similar analysis was conducted on the optimal heuristics identified by our
model for the corresponding scenarios. (B) Centroids for the clusters uncovered in human
data and model simulations from Experiment 1. The first two clusters correspond to
previously identified strategies: Take-The-Best (TTB) and Weighted Additive (WADD),
respectively. The third and fourth clusters correspond to the newly discovered strategies:
Satisficing-TTB (SAT-TTB) and SAT-TTB+. A fifth cluster corresponding to gambling
randomly (without gathering information) was also revealed in the human data.

Identification of resource-rational heuristics

As discussed above, previous work has identified a set of well-known heuristics that

people use in multi-attribute risky choice. For example, Take-the-Best (TTB) chooses

between alternative options based on the one single attribute that is the best predictor of
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the outcome (Gigerenzer & Goldstein, 1996).2 Another heuristic, Satisficing (SAT),

considers alternative options until it finds one that is good enough (Simon, 1956); it is

sometimes referred to as a conjuctive rule. These heuristics both ignore information about

some alternatives or attributes. In contrast, a less frugal strategy, Weighted Additive

(WADD), considers all the available information and computes the expected payoffs of all

alternatives (Gigerenzer & Goldstein, 1999; Payne et al., 1988; Simon, 1956). It remains

unknown, however, whether additional heuristics exist. Here we set out to discover new

heuristics by exploring the full space of potential heuristics encompassed by all the wide

range of decision environments we considered.

We found the best strategy for each of 1000 distinct Mouselab problems,

corresponding to 20 random samples of payoff matrices in each of the 50 conditions

outlined above. To explore this space in a data-driven way, we applied the k-means

clustering algorithm to the sequences of actions (“clicks”) performed by our

resource-rational model. k-means clustering partitions the click sequences into k discrete

clusters of similar sequences, with the centroid of each cluster showing the prototype click

sequence for that cluster. These prototypes highlight distinct types of heuristics deployed

in the Mouselab task.

Prior to applying clustering, we transformed the click sequences into a standard

format as shown in Figure 3A. The following steps were performed to reduce uninformative

spatial variation across trials in the locations of clicks. First, for each problem, a 4 × 6

indicator matrix of click locations in the Mouselab grid was generated. Second, for each

column, the sum of outcome probabilities for every observed cell was computed. Finally, we

performed the following transformation on the indicator matrix: rows (outcomes) were

rearranged from the most to the least probable outcome, and columns (gambles) were

rearranged in descending order of the sum of the probabilities of the outcomes observed in

2 If there is a tie, then TTB considers the second most predictive attribute (and so on) but this scenario
virtually never occurs in our paradigm because there are about 1000 possible payoffs.
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that column. This transformed binary matrix from each trial was collapsed into a vector of

length 24 (representing click locations but not the temporal sequence of clicks), which

comprised a sample for k-means clustering.

We applied the Elkan k-means clustering algorithm to the locations of clicks

predicted by our resource-rational model across all 1000 problems, with a Euclidean

distance metric (Elkan, 2003). In this and all subsequent analyses, the distribution of the

1000 problems used to measure the model’s behavior was exactly proportional to the

particular distribution of those trials received by all participants, to remove variance from

model-participant comparisons. Fisher’s Linear Discriminant Analysis (LDA) was used to

project the 24-dimensional click sequence vectors onto a 2-dimensional space (Fisher,

1936). We selected k = 4 clusters because this identified unique types of click patterns;

k > 4 resulted in redundant clusters (see Figure B2 for a comparison of different values of

k), which could be due to a limit in the number of strategies people use, or a limitation of

the clustering method.

Figure 3B (top) shows the centroids identified in the resource-rational click

sequences. Inspecting the prototypes for the resource-rational model in centroids 1 and 2

revealed that our method rediscovered the TTB heuristic (Gigerenzer & Goldstein, 1999)

and the WADD strategy, respectively. This indicates that these heuristics strike a

near-optimal trade-off between decision quality and cognitive cost, at least in some

situations. TTB corresponds to inspecting only the most probable attribute for each

alternative gamble. The WADD strategy clicks practically everywhere, hence the nearly

all-yellow color. Rediscovering these classic heuristics provides support for the validity of

our approach.

Centroids 3 and 4 correspond to the prototypes of two newly discovered strategies.

The first, which we call SAT-TTB, combines elements of TTB and Satisficing (see

Figure 1), and may be likened to a single-dimension conjunctive rule. Like TTB, SAT-TTB

inspects only the payoffs for the most probable outcome. But unlike TTB and like
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Satisficing, SAT-TTB terminates as soon as it finds a gamble whose payoff for the most

probable outcome is high enough, reducing the amount of information considered. The

second newly discovered heuristic, SAT-TTB+, starts by inspecting some or all of the

payoffs for the most probable outcome (as in SAT-TTB), and then inspects additional

payoffs for the second-most probable outcome from one or more of the most promising

gambles (examples of this strategy are shown in the sequence of clicks illustrated in

Figure 2 and in Figure 3A). This strategy is similar to a lexicographic semi-order model

(e.g., Birnbaum & Gutierrez, 2007; Manzini & Mariotti, 2012; Safarzadeh & Rasti-Barzoki,

2018; Tversky, 1969). The two newly discovered heuristics do not correspond to any

heuristics previously observed in Mouselab. Yet, as described below, we found that people

frequently use these heuristics across the wide range of environments in which they are

adaptive.

In addition to allowing us to identify these four heuristics from the optimal

strategies produced by the model, our approach allows us to generate predictions about

when a rational agent should choose to employ each heuristic. In particular, the 50

different conditions reflecting different combinations of stakes, dispersion, and cost result in

significant variation in which heuristic the model predicts should be employed. In the

remainder of the paper we compare these predictions against human behavior, allowing us

to examine whether people appropriately adapt which heuristic they use and how closely

they approximate resource-rational performance.

Experiment 1: Evaluating the model predictions

To evaluate the model predictions, we conducted a large-scale experiment, collecting

choices from human participants in each of the 50 conditions used to generate our model

predictions.
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Methods

Participants

We recruited 2,368 participants on Amazon Mechanical Turk (1, 115 females, mean

age 37.6 years, standard deviation 16.4 years), and paid them $0.50 plus a

performance-dependent bonus of up to $10.38 (average bonus $3.25) for a mean of 10.2 min

of work (standard deviation 4.1 min). Informed consent was obtained using a consent form

approved by the Institutional Review Board at Princeton University.

Stimuli and procedure

Following instructions and a comprehension check, participants performed a

variation of the Mouselab task (Payne et al., 1988). Each of the 20 trials began with a 4 × 6

grid of occluded payoffs: six gambles to choose from (columns) and four possible outcomes

(rows). The occluded value in each cell specified how much the gamble indicated by its

column would pay if the outcome indicated by its row occurred. The outcome probabilities

were described by the number of balls of a given color in a bin of 100 balls, from which the

outcome would be drawn (see Figure 1). For each trial, participants were free to inspect

any number of cells before selecting a gamble. Clicking on a cell revealed its payoff, and

participants were charged a fixed cost per click, depending on the condition. The value of

each inspected cell remained visible onscreen for the duration of the trial. When a gamble

was chosen, participants were informed about which outcome had occurred, the resulting

payoff of their chosen gamble, and their net earnings (payoff minus click costs).

The experiment used a 2 × 5 × 5 between-subjects factorial design with a total of

fifty conditions, corresponding to those used to generate the model predictions above. The

parameters in each condition were the same as those used for model simulations. These

parameters included 1) the stakes of the decision, with lower variation in points for low

stakes, and higher variation in points for high stakes (points drawn from N (0, σ2) where

σ ∈ {75, 150}), 2) the dispersion of outcome probabilities, with one outcome being much
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more likely than others for low dispersion, and all outcomes being roughly equally likely for

high dispersion (outcome probabilities drawn from Dirichlet(α · 1) where

α ∈ {10−1.0, 10−0.5, 100.0, 100.5, 101.0}), and 3) the cost of collecting information, defined by

the number of points subtracted for each click (λ ∈ {0, 1, 2, 4, 8}).

The instructions explained the task by walking the participant through the

demonstration of a trial with step-by-step explanations. These explanations covered the

cost of clicking, the way that their payoff was determined, the range of payoffs, how some

outcomes were more likely than others, and a description of the performance bonus ($0.01

for every 5 points). Participants were given three practice trials, and after these

instructions, they were given a quiz that assessed their understanding of all critical

information conveyed in the instructions. The full experiment, including instructions, can

be viewed at https://kcggl-expt1.netlify.app/. If a participant answered one or more

questions incorrectly, they were required to re-read the instructions and retake the quiz. If

they failed the quiz three times, they were not allowed to participate in the main task.

Transparency and openness

Our results did not exclude any participants (except where noted for comparisons),

the sample size per experimental condition was selected prior to data analysis, and we

report effect sizes. The model simulations were run using Julia (Bezanson et al., 2017),

including the BayesianOptimization library. The behavioral analyses were run using

Python 3 (Van Rossum & Drake, 2009), including the statsmodels (Seabold & Perktold,

2010), scikit-learn (Pedregosa et al., 2011), and SciPy (Virtanen et al., 2020) libraries, and

using R (R Core Team, 2020) and RStudio (RStudio Team, 2019) with the lme4 library

(Bates et al., 2015). The study design and analysis were not preregistered. All code and

data used to run the experiments and produce the results presented in this paper are

available at https://github.com/fredcallaway/rational-heuristics-risky-choice/.

https://kcggl-expt1.netlify.app/
https://github.com/fredcallaway/rational-heuristics-risky-choice/
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Results

We compared the clusters of click sequences produced by our model to those

produced by human participants. To further assess the theoretical predictions of our

method, we next examined how these strategies depend on the structure of the

environment. We looked at how the resource-rational method adapts heuristic use to the

statistics of the environment, and then compared this to how people’s heuristics depend on

the environment. Finally, we tested additional theoretical predictions about the variability

of people’s choice behavior and quantified how our participants’ choice behavior deviated

from resource-rational decision-making.

Identification of strategies

As an initial analysis, we repeated the k-means clustering procedure we used to

characterize the different strategies employed by our resource-rational mode. Data from

each trial was transformed in exactly the same way as the model predictions, and the

resulting representations were clustered. For human participants, using k = 5 clusters

produced distinct click patterns, whereas using k > 5 clusters resulted in groups of

redundant strategies (see Figure B3 for a comparison of different values of k). The results

are shown in Figure 3B.

The first four clusters recapitulate perfectly those produced by the model,

manifesting the classic strategies TTB and WADD as well as the newly discovered

SAT-TTB and SAT-TTB+. While the resource-rational model never gambles randomly,

participants do occasionally gamble without gathering any information; this is captured in

centroid 5.

Based on the clustering solution, we defined 5 distinct strategies to be considered in

subsequent analyses as follows: 1) SAT-TTB+ was defined as clicking one or more cells

from the most probable row, and one or more cells from one or more additional rows, but

never more cells from a less probable row than from a more probable row; 2) SAT-TTB



IDENTIFYING RESOURCE-RATIONAL HEURISTICS 26

was defined as selecting 1-5 cells from the most probable row, and nothing else, with the

final clicked cell having the highest payoff; 3) TTB was operationalized as selecting all 6

cells from the most probable row, and nothing else; 4) WADD was defined as selecting all

24 cells; 5) A random strategy entailed zero clicks. Finally, we considered a miscellaneous

category of other strategies which were those not consistent with any of the previous five

definitions.

Comparison of strategies across environments

The clustering results indicate that people use the same types of heuristics as the

resource-rational model. To determine whether people deploy these heuristics rationally, we

inspected how the frequency with which people use each strategy depends on the structure

of the environment. Consistent with our main predictions, we found that participants

adapt their strategies to the environment in much the same way as the resource-rational

model (see Figure 4).3

Our resource-rational model predicted that as the stakes increase, participants

should rely less on the most frugal strategy—SAT-TTB—and more on SAT-TTB+, which

gathers additional information. The data confirmed both predictions; that is, regressing

the frequencies with which participants used each strategy on each of the three

environmental parameters in a logistic mixed-effects regression with random intercepts

revealed that the stakes had a significant negative effect on the frequency of SAT-TTB

(B = −2.3, p < 0.001) and a significant positive effect on the frequency of SAT-TTB+

(B = −1.3, p < 0.001; left panels of Figure 4). In all regressions, B values denote the effect

of moving one step up in the condition variable.

The model predicted that as the outcome distribution becomes more peaky (i.e.,

higher dispersion), the use of TTB should steadily increase; intuitively, one can focus on a

3 To facilitate the comparison between the model predictions and participant behavior, Figure 4 is
conditioned on the four strategies shown, that is, not including undefined patterns of clicking or random
gambles.
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Figure 4
Use of Weighted Additive (WADD), Take-The-Best (TTB), and variations of
satisficing-TTB (SAT-TTB and SAT-TTB+) by the resource-rational model and human
participants in Experiment 1 as a function of the three environment parameters: σ, the
standard deviation of possible payoffs, α−1, the peakiness of the outcome distribution, and
λ, the cost paid for each piece of information revealed. Error-bars show the 95% CI across
participants

single outcome when only one is likely to occur. Our participants confirmed this prediction

(B = −5.5, p < 0.001; middle column of Figure 4). However, while the resource-rational

model most-often uses SAT-TTB+ in low-dispersion environments, participants often

resorted to choosing randomly instead (B = −1.4, p < 0.001).

When there is no cost for gathering information, the model always uses WADD

since the value of information is always positive. Although participants also limited their

use of WADD to this case, they were more likely to use SAT-TTB+. As the cost increases

from 1 to 8, the resource-rational model and participants show the same pattern for the

remaining three strategies: decreasing the use of both SAT-TTB+ (B = −0.8, p < 0.001)

and TTB (B = −3.9, p < 0.001), while increasing use of the most frugal strategy,

SAT-TTB (B = −3.3, p < 0.001). Figures C1 and C2 compare strategy frequencies in each
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of the 50 conditions, showing broad correspondence between the resource-rational model

and participants.

Table C1 summarizes post-hoc pairwise comparisons and effect sizes for the

statistics reported in this section.

Understanding variability in choice behavior

Previous research on multi-attribute risky choice has characterized people’s choice

behavior in the Mouselab paradigm in terms of four features (Lohse & Johnson, 1996;

Payne, 1976b; Payne et al., 1988). The first feature is the total amount of information

processed, the second measures the relative frequency of attribute- versus alternative-based

information processing, and the third and fourth features measure the variance in

information gathering across attributes and alternatives, respectively. Payne et al. (1988)

used these measures to assess how participants trade-off effort and accuracy across nine

hand-selected heuristics, finding that both high dispersion and time pressure lead to less

information gathering, more attribute-based processing relative to alternative-based

processing, and more selectivity for attributes (i.e., greater variance in information

gathering across each). The resource-rational model predicts all of these effects (with click

cost having a similar effect as time pressure) as well as a similar pattern when the decision

stakes decrease. Here, we confirm that all these effects hold across a broad set of decision

environments. However, both the resource-rational model and our participants deviate

from the finding of Payne et al. (1988) on the effect of dispersion on alternative variance.

We first considered the total amount of information gathered (i.e., the number of

clicks made). As illustrated in Figure 5A, participants adapted the amount of information

gathered to the environmental structure in much the same way as the model, but they

consistently gathered too little information. When the stakes increase, the potential for

large gains and large losses goes up, and this merits more information gathering. Indeed,

participants gathered more information as the stakes increased (a linear mixed-effects
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Figure 5
Behavioral correspondence between participants and the resource-rational model in
Experiment 1. (A) The average number of values revealed by participants and the model as
a function of each environment parameter. (B) The same, but for a measure of
alternative- vs. attribute-based processing (negative indicates attribute-based). Error-bars
show the 95% CI across participants.

regression with random intercepts for participants revealed that the stakes significantly

predicted information gathered: B = 0.57, p = 0.009). When the dispersion of outcome

probabilities increases, people should gather less information, since fewer outcomes (and

thus cells) are relevant to each gamble’s value; participants trended in this direction

(B = −0.13, p = 0.097). Finally, people reduced information gathering as it became more

costly to do so (B = −1.9, p < 0.001). However, across all conditions, participants made on

average 4.9 fewer clicks than the resource-rational model. We explore possible explanations

for this discrepancy below.

We next looked at a behavioral feature that characterizes the sequences of

information gathering. Specifically, we computed a metric that measures the relative

frequency of alternative-based vs. attribute-based processing. In attribute-based

processing, sequential clicks are made on one row/outcome (as in TTB and SAT-TTB);

this corresponds to comparing several gambles along one dimension. In alternative-based
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processing, sequential clicks are made on one column/gamble; this corresponds to

evaluating one gamble based on multiple features. We can measure the relative frequency

of alternative-based versus attribute-based processing in a given trial as the number of

sequential transitions between alternative-based clicks minus the number of sequential

transitions between attribute-based clicks, divided by the sum of the two terms (Payne,

1976b; Payne et al., 1988). This yields a number between −1 and +1, with positive values

indicating alternative-based processing, and negative numbers indicating attribute-based

processing. Figure 5B shows that both the model and participants rely more on

attribute-based processing overall, but with the model favoring this type of processing

more heavily than people. Furthermore, participants adapted their processing pattern to

the environment in all of the ways predicted by the model: they used more

alternative-based processing as the stakes increased (B = 0.052, p = 0.016); they used more

attribute-based processing as dispersion increased (B = −0.084, p < 0.001) and as cost

increased (B = −0.073, p < 0.001). A comparison of information gathering and alternative-

vs. attribute-based processing for the model and participants across each of the fifty

decision environments shown in Figure D1, showing an overall qualitative correspondence.

Two additional informative behavioral markers are the variance in the amount of

information gathered across outcomes and across gambles. Attribute-variance in

information gathering is defined as the variance of the proportion of clicks made on each

row/outcome, being zero if clicks are evenly divided across outcomes. High attribute

variance is a signature of “non-compensatory” strategies that focus attention on a subset of

attributes (because the less important attributes cannot “compensate” for the more

important ones) (Payne, 1976b; Payne et al., 1988). Alternative-variance in information

gathering is defined in the same way, but for columns. High alternative variance is a

signature of strategies that either gather more information for high-value gambles (as in

SAT-TTB+) or stop searching once a high-value gamble is found (as in SAT-TTB).

Figure D2 shows qualitative correspondence between participants and the resource-rational
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model for both of these measures. As the stakes increase, both the resource-rational model

and the participants spread their clicks more uniformly both across attributes (attribute

variance; B = −0.01, p < 0.001) and alternatives (alternative variance;

B = −0.004, p = 0.0016), likely due to an overall increase in information gathering. When

one outcome was much more likely than all others, people tended to compare many

alternatives on that single outcome without considering any other outcomes. As predicted,

increasing the differences between the probabilities of different outcomes (higher

dispersion) therefore made people distribute their attention less evenly across the different

attributes (B = 0.0091, p < 0.001) and more evenly across the alternatives

(B = −0.0026, p < 0.001). Finally, increasing the cost of information made people more

discerning in how much attention they paid to different attributes (B = 0.017, p < 0.001)

and different alternatives (B = 0.009, p < 0.001). Payne et al. (1988) predicted that time

pressure would have a similar effect, but observed a null result on alternative variance. As

noted below, this may be due to a small sample size in their study. Figure D3 shows the

qualitative correspondence between the model and participants for these two measures

across all fifty decision environments.

It is noteworthy that whereas Payne et al. (1988) observed more selectivity for

alternatives (higher alternative variance) with high dispersion, our resource-rational model

makes the opposite prediction and this prediction is confirmed by participant behavior.

Our prediction makes sense intuitively: as dispersion increases, information from less likely

attributes becomes less useful, and therefor multiple samples within a single alternative

become less useful, consistent with more frequent use of TTB and less frequent use of

SAT-TTB+ as dispersion increases (middle panels of Figure 4). The most likely

explanation for this inconsistency is that the result of Payne et al. (1988) was spurious, as

the study included only 16 participants and the p value was between .01 and .05.

Table D1 presents results of additional statistical tests for the results reported in

this section.
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Performance

In addition to providing a framework for discovering heuristics, our formalism

provides a realistic normative standard for human decision-making. This allows us to

determine to which extent human deviations from perfectly rational decision-making can

be attributed to resource-rational consideration of the cost of gathering information vs.

genuinely irrational use of one’s cognitive resources. We measured people’s relative

performance by the fraction of the highest expected reward attainable with perfect

information, omitting the cost of information gathering. This relative measure allows as to

compare resource-rational performance of the model to unboundedly optimal performance

with perfect information (i.e., maximum expected value). Omitting the cost of information

gathering is useful for this comparison, and for comparing gross performance across cost

conditions.

As illustrated in Figure 6, our resource-rational model performs relatively close to

the unboundedly optimal standard of 1.0, falling shorter when less information is gathered.

Concretely, the average relative performance was 0.895. Furthermore, our model accurately

predicted that participants’ relative performance increases with the stakes

(B = 0.039, p = 0.0035), decreases with the dispersion of the outcome probabilities

(B = 0.059, p < 0.001), and decreases with the cost of gathering and processing

information (B = −0.063, p < 0.001). These results are shown in Figure 6.

It is apparent that participants under-perform compared to the model. The average

relative performance of all participants was only 0.542. Thus, 23% of the gap between all

participants’ performance and the performance of the unboundedly optimal decision

strategy (i.e., maximizing expected value) can be explained by resource-rational sensitivity

to the imposed click cost, whereas 77% is due to people’s deviations from the

resource-rational model. Importantly, this proportion could be further reduced by

accounting for additional costs and constraints not considered by our model, which we set

out to do in Experiment 2.
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Figure 6
Participants show a qualitative correspondence to the model in performance across
conditions in Experiment 1. Performance was measured as the relative reward earned on
each trial (the fraction of the highest possible reward with perfect information, omitting
click costs). Error-bars show the 95% CI across participants.

Table E1 summarizes the main effects, corrections for multiple comparisons, and

effect sizes for measuring relative performance across conditions. Figure E2 shows a

qualitative correspondence between participants’ and the resource-rational model’s relative

performance across all 50 environmental conditions; see Appendix E for detailed results

when excluding low-effort participants who gambled randomly on more than half of all

trials (16.6% of participants).

Sources of under-performance

Our resource-rational model allowed us to investigate how close human performance

comes to the upper bound established by our resource-rational model. As shown in

Figure 6, people performed systematically worse than the resource-rational model across all

environments. Participants’ average relative performance was 60.6% that of the model, as

shown in Figure 6. Measured in raw points, participants achieved an average of 31.8 fewer

points per trial than the resource-rational model. What explains this sizable gap? There

are at least four possible reasons why people might be suboptimal: implicit costs of

information gathering, imperfect use of the gathered information, imperfect strategy

selection, and imperfect strategy execution. As detailed below and illustrated in Figure 7,

participants achieved 61.4% (95% CI [58.8, 61.9]) of the net performance of the model,
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Figure 7
Sources of under-performance in Experiment 1. Participants’ net performance was 61.4%
(95% CI [58.8, 61.9]) that of the model, with four distinct sources of the remaining 38.6%
gap depicted here.

with each of these four sources respectively accounting for 4.2%, 4.2%, 25.0%, and 5.2% of

the remaining 38.6% participant under-performance (measured as a percentage of the

model’s net performance, as detailed below. See Appendix E for detailed results when

excluding low-effort participants).

We now describe these four sources of under-performance, and assess the degree to

which they contribute to people’s under-performance in turn. The measure of relative

performance plotted in Figure 6 omitted the costs of information gathering (to facilitate

comparisons across conditions), and measured relative performance as a fraction of

performance with perfect information (to assess the model’s resource-rational performance
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against an unboundedly optimal upper bound). Here (including Figure 7), we used net

performance, defined as the payoff received minus the costs of information gathering, as a

fraction of the model’s performance. This measure of net performance allows us to compare

people’s resource rationality against the standard set by our normative model. This

analysis revealed that, on average, the net performance of participants’ decision strategies

was 61.4% (95% CI [58.8, 61.9]) of the net performance of resource-rational

decision-making. The four sources of under-performance collectively account for the

remaining 38.6% gap in their performance.

First, participants may be influenced by costs not accounted for by our

resource-rational model. This might be able to explain why participants collected less

information than the resource-rational model. These costs might capture, for example, the

cost of the time required to move a cursor and make clicks, as well as the anticipated

cognitive costs associated with processing the revealed information (Payne et al., 1988). To

assess the degree to which insufficient information gathering led to participants’ suboptimal

performance, we ran 1,000 simulations of the model on each of the exact same trials

presented to human participants, and measured net performance. To control for the overall

amount of information gathered between our method and participants, we fit an implicit

cost of information gathering to match the average number of clicks made by participants

using a grid search. We found that an implicit cost of 2.4 points per click led to the same

amount of information gathering on average as participants. We then measured the net

performance of the model with an implicit cost of clicking of 2.4, and found a 4.2%

reduction from the model without an implicit cost (as depicted in Figure 7).

A second source of under-performance is the imperfect use of gathered information.

That is, given the information revealed, participants may simply fail to select the gamble

with the highest expected value. This shortcoming can be accounted for by the effort

required to compute such values in this task. To measure the extent to which people are

suboptimal because they make imperfect use of the collected information, we computed the
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conditional expected values of all alternatives given the information revealed by the

participant. We then compared participant net performance to what it would have been

had they chosen the gamble with the highest information-contingent expected value. As

with the previous source of under-performance, this difference in net performance was

measured as a percentage of the resource-rational model’s net performance.

A third possible source of under-performance is imperfect strategy selection. At an

aggregate level, people use the same heuristics as the model in roughly correct proportion

for each environment. However, on a trial-by-trial basis, they may not always choose the

most effective heuristic. We compared the strategy selected by participants on each trial to

that chosen by the model. To measure imperfect strategy selection, we measured the

reduction in net performance on trials in which participants chose a different strategy than

the model, while controlling for the previous two sources of under-performance (by

conditioning on the amount of information gathered and the use of information).4 As

before, this reduction in net performance was quantified as a percentage of the net

performance of the resource-rational model.

Finally, even when participants choose the same strategy as the model, they may

not execute it perfectly. For example, they may set an incorrect satisficing threshold in

SAT-TTB, or they may consider too many or too few additional features in SAT-TTB+.

Such imperfect strategy execution is the fourth potential source of under-performance. To

calculate this, we compared the participants’ and the model’s net performance when there

was agreement in trial-wise strategy selection, again controlling for the first two sources of

under-performance, and again measuring it as a percentage of the model’s net performance.

Together, these four factors cover all possible ways in which people might deviate

from the normative standard of resource-rational decision-making.

4 Since the model was simulated 1,000 times per trial, it may occasionally choose different strategies for the
same trial. Therefore, the contribution of each strategy to the model’s net performance on a given
trial—and the extent to which it agrees with participant strategy selection—is weighted by the probability
of choosing each strategy on that trial.
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Figure 8
Sources of imperfect strategy selection and execution in Experiment 1. Each cell states
participants’ average reduction of net performance from a trial-wise comparison of
model-participant strategy selection. Off-diagonal cells correspond to imperfect strategy
selection, while on-diagonal values correspond to imperfect strategy execution. Colors
correspond to the number of trial-wise model-participant strategy pairs. For example, the
upper-left cell shows that trials in which participants and the model both selected
SAT-TTB+ contributed to 4.0% to the decrement of participants’ net performance (with
9,625 such trials occurring out of the 47, 360 trials across all participants, thus the yellow
color). The cell just below that shows that participants on average lost 1.8% when they
selected SAT-TTB+ but the model chose SAT-TTB, with 3,394 such trials occurring (thus
the teal color).

Figure 7 shows the contribution of each of these four sources to under-performance.

Implicit costs of gathering information account for 4.2% of participant under-performance.

Participants failed to choose the gamble with the highest subjective expected value on

27.3% of all trials, losing 10.4 points on average on such trials. This imperfect use of

information accounts for 4.2% of the participants’ under-performance.

Imperfect strategy selection accounts for the majority of participant

under-performance (25.0%), with random gambling accounting for most of it (13.9% of

participant under-performance). Overall, these results suggests that while people use
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resource-rational decision strategies and adapt them to the environment in a similar way as

the resource-rational model, they often do not use the optimal strategy on a trial-by-trial

basis.

Finally, Figure 7 also shows that imperfect strategy execution contributes 5.2% to

participants’ under-performance. Errors in executing SAT-TTB+—the most complicated

strategy—accounted for most of this source. Figure 8 displays the average reduction in

performance based on a trial-wise comparison of participant and model strategies.

Off-diagonal values correspond to imperfect strategy selection. For example, trials in which

participants gamble randomly and the model chooses SAT-TTB+ account for 7.5% of

under-performance, and the sum of off-diagonal values in the “random” column equals the

corresponding 13.9% displayed in Figure 7. On-diagonal values correspond to imperfect

strategy execution. For example, when both participants and the model chose SAT-TTB+,

participants lost an average of 4.0% of the model’s net performance. Colors depict the

number of trials occurring for each participant-model strategy pair.

Consistent with the idea that people first choose a decision strategy and then

execute it, we found that participants deliberated longer before the first click (2.92 sec)

than before subsequent clicks (0.81 sec, t(2549) = 128.5, p < 0.001). Deliberation time also

predicted information gathering, such that longer deliberation was followed by more frugal

strategies (0.62 fewer clicks for each second spent deliberating; B = −0.62,

t(38737) = −37.6, p < 0.001).

Discussion

While our resource-rational model successfully predicted how participants adapt

their decision heuristics and other behavioral measures to the statistics of the decision

environment, they still fell considerably short of the standard set by our model. We have

attempted to understand the origins of this under-performance.

The first source of under-performance—implicit costs of gathering information—was
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measured by controlling for the amount of information gathered by the model. The

parameter for the implicit cost of information gathering is meant to account for all

additional costs of gathering and processing one piece of information people might

experience. This approach assumes that people plan rationally, subject to their cognitive

costs. However, it is also possible that people simply gather less information than they

should. Furthermore, a simple cost-per-click is only a rough approximation of the true

information processing costs (which likely vary depending on which information was

acquired). Better characterizing the computational costs involved in risky choice, and

dissociating implicit costs from suboptimal information gathering, is an important

direction for future research.

It is worth noting that the physical effort required in our task to move the cursor

and click on cells was a useful experimental adaptation to objectify the cognitive cost of

information gathering. The Mouselab task typically reveals information when the cursor

simply hovers over a cell, occluding it once again when the cursor leaves the cell, which is

thought to mimic the real-world process of gathering information through eye movements.

While there is mixed evidence whether information gathering in Mouselab differs

significantly from eye movements (Glöckner & Betsch, 2008; Lohse & Johnson, 1996;

Reisen et al., 2008), these other forms of information gathering could also in principle be

captured in a more complicated meta-MDP model. Future work may apply our

resource-rational approach to more precisely identify the underlying cognitive processes

involved in deriving heuristic decision-making.

Experiment 2: Reducing cognitive constraints

To evaluate the extent to which participants’ under-performance was due to implicit

costs and cognitive limitations not accounted for by our model, we ran a second experiment

with an experimental condition designed to remove or reduce some of those costs and

mitigate those limitations. In particular, participants were forced to spend a minimum of
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20 seconds on each trial, and the subjective expected value of each gamble given the

observed information was displayed for each gamble and updated whenever new information

was revealed. These two manipulations were intended to reduce the opportunity cost of the

time it takes to obtain and process additional information and the cognitive cost associated

with estimating the expected value of each gamble, respectively. We predicted that these

manipulations would bring people’s decision strategies into closer alignment with the

predictions of our resource-rational model by reducing unaccounted costs of information

gathering and helping people use the acquired information as effectively as our model does.

Methods

Participants

We recruited 404 participants on Amazon Mechanical Turk (250 males, mean age

37.5 years, standard deviation 10.8 years), and paid them $0.50 plus a

performance-dependent bonus of up to $4.23 (average bonus $1.66) for about 13.3 min of

work on average (standard deviation 6.4 min). Informed consent was obtained using a

consent form approved by the Institutional Review Board at Princeton University.

Stimuli and procedure

The experiment used a 2 × 2 × 2 between-subjects factorial design with a total of 8

conditions. The factors we varied between participants were the dispersion of outcome

probabilities (α ∈ {10−0.5, 100.5}), the cost of collecting information (λ ∈ {1, 4}), and

whether the participant was in the experimental group or the control group. The stakes of

the decisions were low in all conditions (σ = 75).

For the control group, the task and the instructions were identical to the previous

experiment. For the experimental group, the subjective expected value of each gamble

given the observed information was displayed next to the label for each gamble. Thus, each

time a participant clicked on a cell to reveal its value, the expected value for that gamble



IDENTIFYING RESOURCE-RATIONAL HEURISTICS 41

Figure 9
Screenshot from Experiment 2. To reduce implicit costs associated with information
gathering and information use, participants in the experimental group were given a
20-second time-minimum per trial, and a display of the subjective expected value of every
gamble.).

was updated according to Equation 3 and displayed atop that column. Furthermore, the

experimental group was forced to spend a minimum of 20 seconds on each trial, and a

countdown timer was displayed for the first 20 seconds of each trial. After the first

20 seconds, participants were free to spend additional time if they so chose. Figure 9 shows

a screenshot from a trial of the experimental condition. These two features of the task were

incorporated into the instructions received prior to the task for this group. As a result of

these differences, participants in the experimental group spent more time on the task and

earned a greater performance bonus on average (16.9 ± 5.3 min, $1.77 ± $0.97) than

participants in the control group (9.8 ± 5.2 min, $1.54 ± $0.95).

The stakes of the decisions—that is, the variation in outcomes—were always low

(σ = 75). To eliminate variance in performance due to random sampling of trials, we used

a single set of 40 problems (20 for each dispersion level), such that every participant in a

given condition solved the same set of problems. All participants were required to pass the

same comprehension quiz used in the previous experiment. The experimental condition of

this experiment can be viewed at https://kcggl-expt2.netlify.app/.

https://kcggl-expt2.netlify.app/


IDENTIFYING RESOURCE-RATIONAL HEURISTICS 42

Transparency and openness

The data analyses relied on all the same practices and software stated for the

previous experiment. All code and data used to run the experiments and produce the

results are available at https://github.com/fredcallaway/rational-heuristics-risky-choice/.

Results

Identification of strategies

We applied the same k-means clustering procedure used in the previous experiment,

separately for the model, the experimental group, and the control group. As shown in

Figure 10, the clusters in the control group closely matched those found in Experiment 1.

However, the experimental group did not contain a distinct cluster for gambling randomly

because random gambling was greatly diminished for this group (6.6% vs. 28.6% of all

trials, p < 0.001; 4.5% vs. 27.2% of participants gambled randomly on more than half of all

trials, p < 0.001). As described in detail below, this brought the strategies of participants

in the experimental group into greater alignment with the optimal strategies predicted by

our model.5

Comparison of strategies across environments

For brevity, we use the following acronyms when referring to the different

environments: LD-LC for low dispersion, low cost; LD-HC for low dispersion, high cost;

HD-LC for high dispersion, low cost; and HD-HC for high dispersion, high cost.

As illustrated in Figure 11, participants in the experimental group showed an overall

shift toward more costly strategies. In all environments, a χ2-test of independence revealed

5 The clusters discovered for the model are not identical to those seen in Figure 3, corresponding to
Experiment 1, because 1) the environments in Experiment 2 are different; in particular they are limited to
low-stakes environments and do not include any conditions where the cost of gathering information is zero,
as in Experiment 1; and 2) the particular trials presented to participants within the low-stakes condition
are not identical across experiments (and all model comparisons use the same distribution of trials that are
presented to participants).

https://github.com/fredcallaway/rational-heuristics-risky-choice/
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Figure 10
Experiment 2 k-means centroids. The manipulations in the experimental group led to a
great reduction in random gambling for participants in this group, which is why a cluster
for random gambling was unnecessary (middle panels). The model (top panel) and both
groups of participants performed the Mouselab task in low-stakes environments, with a 2 × 2
between-subjects design of outcome dispersion and cost of information gathering).

an increase in the use of SAT-TTB+ (LD-LC: χ2(1, 3960) = 32.9, p < 0.001, d = 0.25;

LD-HC: χ2(1, 3960) = 49.9, p < 0.001, d = 0.32; HD-LC:

χ2(1, 3960) = 32.9, p < 0.001, d = 0.25; HD-HC: χ2(1, 3960) = 32.9, p < 0.001, d = 0.25).

Conversely, participants used the more frugal SAT-TTB strategy less often in all

environments except for the LD-HC environment (LD-LC:

χ2(1, 3960) = 12.4, p < 0.001, d = −0.16 ; LD-HC: χ2(1, 3960) = 0.1, p = 0.8, d = 0.01 ;

HD-LC: χ2(1, 3960) = 12.4, p < 0.001, d = −0.16 ; HD-HC:

χ2(1, 3960) = 12.4, p < 0.001, d = −0.16 ). While these overall changes away from the

frugal SAT-TTB heuristic toward the more costly SAT-TTB+ strategy brought

participants in the experimental condition closer to the predictions of our resource-rational

model, they shifted too far toward the most costly strategy, WADD. While the model never

uses WADD, participants in the experimental group used it more than those in the control
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Figure 11
Reducing implicit costs increases the use of costly heuristics. Participants in the
experimental group in Experiment 2 show a general increase in the use of SAT-TTB+, and
even WADD, and a general decrease in the most frugal heuristic, SAT-TTB.

group in all environments except HD-LC (LD-LC: χ2(1, 3960) = 114.9, p < 0.001, d = 0.53 ;

LD-HC: χ2(1, 3960) = 124.6, p < 0.001, d = 0.69 ; HD-LC:

χ2(1, 3960) = 114.9, p < 0.001, d = 0.53 ; HD-HC: χ2(1, 3960) = 114.9, p < 0.001, d = 0.53 ).

For a detailed comparison of the frequency of each strategy for each group in each

environment against our resource-rational model, see Figure 11 (this figure omits random

gambling to facilitate comparison with Figure 4; to see the reduction in random gambling

in the experimental group, see Figure C3).
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Information gathering and choice behavior

The shift toward more costly heuristics in the experimental group is apparent in an

overall increase in information gathering compared to the control group, shown in

Figure 12. In each environment, participants in the experimental group gathered more

information than those in the control group (two-sample t-tests; LD-LC:

t(102) = 4.88, p < 0.001, d = 0.96; LD-HC: t(100) = 4.71, p < 0.001, d = 0.93 ; HD-LC:

t(100) = 3.23, p = 0.0017, d = 0.64; HD-HC: t(94) = 3.31, p = 0.0013, d = 0.68).

Participants’ levels of information gathering were closer to that of the model than

participants in the control group in all environments except LD-HC (Figure 12, top

panels). In the LD-HC environment participants in the experimental group actually

gathered too much information (Figure 12, bottom panels). These absolute deviations of

participant mean information gathering from the model was improved significantly in the

experimental group compared to the control group only in the HD-LC condition (LD-LC:

t(102) = −0.38, p = 0.7, d = −0.07; LD-HC: t(100) = 0.74, p = 0.46, d = 0.15 ; HD-LC:

t(100) = −2.65, p = 0.0094, d = −0.52 ; HD-HC: t(94) = −0.45, p = 0.65, d = −0.09 ).

We additionally inspected the same three behavioral features of alternative- and

attribute-based information processing as in Experiment 1, and these results are presented

in Appendix D.

Performance

The model’s relative performance was 0.886, that is, 88.6% of the gross performance

of the unboundedly optimal strategy that always chooses the gamble with the highest

expected value, with perfect information. Similar to Experiment 1, this percentage was

only 47.9% in the control group. By contrast, for the experimental group, it was 67.8%.

Excluding low-effort participants increased these percentages to 62.1% for the control

group and 78.8% for the experimental group, with the model’s relative performance equal

to 87.9% for the same trials. This suggests that about 44% of the control group’s total



IDENTIFYING RESOURCE-RATIONAL HEURISTICS 46

Figure 12
Information gathering for each group in Experiment 2. Participants in the experimental
group successfully increased their information gathering near levels of the model in the
low-cost conditions (upper panels), but gathered excessive information in the high-cost
conditions (lower panels). (LD = Low Dispersion, HD = High Dispersion, LC = Low Cost,
HC = High Cost; error-bars show 95% CI).

performance gap relative to unboundedly optimal performance stems from unaccounted

cognitive limitations. The resource-rational model explains an additional 32% of this gap.

The remaining 24% appear to result from people’s deviations from resource-rational

decision-making. This suggests that people are more resource-rational than they appeared

in Experiment 1. Concretely, the results suggest that people might be at least 76%

resource-rational. Improving the model further could lead to further upward adjustments

of this estimate.

Given that participants in the experimental group behaved more similar to the

optimal model in some manners/cases but less similar in others, we next asked how

participants’ overall performance was affected by the experimental intervention. To address

this question, we compared participants’ net relative performance. In contrast to the gross
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relative performance measure used in the preceding paragraph and shown in Figure 6 from

Experiment 1, this measure includes the cost of gathering information in addition to the

payoff of the chosen gamble. This measure of performance does not give an unfair

advantage to participants in the experimental group, who gather more information. As

illustrated in Figure 13, participants in the experimental group achieved numerically higher

performance in three of the four environments, but not in the LD-HC environment. This

improvement, however, was only significant in the HD-LC environment

(t(100) = 2.60, p = 0.011, d = 0.52). The difference was not significant in any other

environment (LD-LC: t(102) = 1.51, p = 0.13, d = 0.30 ; LD-HC:

t(100) = −1.77, p = 0.079, d = −0.35 ; HD-HC: t(94) = 0.73, p = 0.47, d = 0.15). Across all

conditions, participants in the experimental group were not significantly more resource

rational than participants in the control group (t(402) = 1.12, p = 0.26, d = 0.11).

Participants in the experimental group should be expected to choose the gamble

with the highest subjective expected value on 100% of trials, since they were given these

values (see Figure 9). However, they failed to do so on 17.6% of all trials. As a result, they

actually lost more points per trial on average than participants in the control group as a

result of these errors (3.3 versus 1.6 points per trial, t(402) = −2.34, p = 0.02, d = −.23).

This counter-intuitive result is manifestly an artifact of participants not performing the

task in good faith, since participants in the experimental group were given the best option.

Whereas low-effort participants have the option to gamble randomly in the control group

or in Experiment 1, in the experimental group they are forced to wait 20 seconds. It

appears that such low-effort participants gambled randomly after gathering excessive

information during the forced wait. To address this, we excluded an equal fraction of

participants from both groups based on participant deviation from model performance (see

the section on Experiment 2 in Appendix E for details).

When excluding low-effort participant from both groups, participants in the

experimental group were significantly more resource-rational than participants in the
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Figure 13
Performance across conditions for each group in Experiment 2. Net relative performance,
which accounts for the cost of gathering information, shows that participants in the
experimental condition tended to improve performance, but not in all conditions (see
Figure E6 for a comparison when excluding low-effort participants). Error-bars show 95%
CI across participants.

control group in every condition (LD-LC: t(55) = 2.36, p = 0.022, d = 0.63; LD-HC:

t(80) = 4.02, p < 0.001, d = 0.90; HD-LC: t(78) = 2.26, p = 0.027, d = 0.51; HD-HC:

t(73) = 2.30, p = 0.024, d = 0.53).

Sources of under-performance

As in Experiment 1, we measured participants’ net performance and four sources of

under-performance as a percentage of the model’s net performance (to account for

differences across conditions). Figure 14 compares these results for participants from each

condition, showing that participants in the control and experimental groups achieved

55.1% (95% CI [47.8, 59.5]) and 62.1% (95% CI [51.5, 67.6]) of the net performance of the

model, respectively.
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Figure 14
Source of under-performance for each group in Experiment 2. Each pie chart shows the
percentage of model net performance achieved by participants in beige, with the remaining
percentage (the performance gap) broken up into different sources of under-performance.
Compared to participants in the control group (left pie chart), participants in the
experimental group (right pie chart) showed slightly better overall performance, with no
implicit costs of gathering information, and much less reduction from random gambling.
Because some participants in the experimental group do not follow the instructions to make
perfect use of information, Figure E7 shows the same results after excluding low-effort
participants from both groups.

Consistent with the goal of our manipulation, participants in the experimental

group gathered about the same amount of information as the resource-rational model on

average across all environments: the fit implicit cost of clicking was 0.0 points per click for

the experimental group and 2.9 for the control group. As a result, performance for

participants in the experimental group was not degraded due to implicit costs, while this

accounted for a large portion of under-performance for participants in the control group

(0.0% vs. 9.6%, respectively, as shown in Figure 14). Surprisingly, participants in the

experimental group showed more imperfect use of information than participants in the
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Figure 15
Sources of imperfect strategy selection (off-diagonal values) and imperfect strategy execution
(diagonal values) for each strategy, for the control group (left plot) and the experimental
group (right plot) in Experiment 2. Experimental participants’ excessive use of WADD
occurred mostly when they should have used SAT-TTB+, according to the model, while
control participants’ excessive use of random gambling occurred mostly when they should
have used SAT-TTB.

control group (8.9% vs. 4.2%). As described in the previous section, this is due to

low-effort participants in the experimental group not performing the task as instructed,

since the values were given to make perfect use of information. As shown in Figure E7,

when excluding low-performing participants, imperfect information use accounted for 2.1%

of under-performance in the control group and 1.9% in the experimental group.

We next considered how imperfect strategy selection and execution differed between

the two groups. As shown in Figure 14, imperfect strategy selection accounted for 28.8% of

under-performance in the control group and 23.6% in the experimental group, while

imperfect strategy execution accounted for 2.3% and 5.5%, respectively. Consistent with

Experiment 1, engaging in random gambling was the most frequent instance of imperfect

strategy selection for participants in the control group, alone accounting for 21.7%) of
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under-performance. In the experimental group, this proportion was reduced to 5.2%. On

the other hand, whereas the use of WADD accounted for only 0.9% of under-performance

in the control group, it accounted for 8.3% in the experimental group, more than any other

strategy. While imperfect execution accounted for a modest proportion of

under-performance in both groups, it was slightly more in the experimental group, due to

the increased usage of the difficult-to-execute SAT-TTB+ strategy. Figure 15 shows the

sources of imperfect strategy selection (off-diagonal values) and execution (diagonal values)

from every strategy. It shows that of the 8.3% reduction in performance from incorrectly

selecting WADD in the experimental group, most of it—4.9%—occurred when the best

strategy to select was SAT-TTB+.

Discussion

The experimental manipulations in Experiment 2 were effective at reducing the

implicit cost of information gathering identified in Experiment 2. The most pronounced

effect of increased information gathering in the experimental group was a reduction of

random gambling and increase in the use of WADD and SAT-TTB+. However, in the

high-cost conditions, participants in the experimental group actually gathered too much

information. Surprisingly, we did not find that imperfect use of information was reduced in

the experimental group (in fact, it increased, although not after excluding low-effort

participants). When excluding low-effort participants, we did find that participants in the

experimental group were significantly more resource-rational than participants in the

control group. However, there was still room for improvement in this group. Overall, these

findings suggest that people deviate from resource-rational decision-making even in settings

where the assumptions of the resource-rational model are met.

General Discussion

Traditionally, rational models and the heuristics and biases approach have offered

very different views of human decision-making. As a result, researchers studying human
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decision-making have typically had to choose between assuming people are rational or

characterizing their behavior as the result of following heuristics that result in systematic

biases. Each approach has advantages and disadvantages. Assuming rationality makes it

easy to generate predictions across a wide range of circumstances, but people sometimes

systematically deviate from rational principles. Research on heuristics and biases has

characterized these deviations, but with many possible heuristics, it can be difficult to

predict what people will do in novel situations.

In this work, we have offered a way to reconcile these two perspectives—rationality

and heuristics—by deriving optimal heuristics for multi-alternative, multi-attribute

decision-making from a rational analysis of how people should allocate their limited

cognitive resources. This approach of applying rationality to cognitive processes themselves

provides a general framework for understanding decision-making that can also make

task-specific predictions. Drawing on ideas from artificial intelligence and machine learning,

we were able to both establish a normative basis for previously identified heuristics and also

discover new heuristics that had previously been overlooked. Furthermore, we collected a

large dataset to test our method across a very broad range of decision environments,

demonstrating both the generalizability and accuracy of our approach. Our results show

that people use all the heuristics that our method identified, and they adaptively select

which heuristic to use in a way that is consistent with our framework. However, the match

was by no means perfect; there is still room to improve on human decision-making.

One of the key ideas behind our approach is that we can formulate the problem of

discovering heuristics and predicting when they should be used as one of finding the

optimal policy of a meta-level Markov Decision Process (Hay et al., 2012; Russell &

Wefald, 1991b). The meta-level MDP framework allows us to identify those heuristics that

optimally trade off the costs associated with acquiring information to update one’s beliefs

about the world with the benefits of that information. This results in a normative view of

heuristics, providing a reconciliation between these historically divergent views of
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decision-making. While information gathering in Mouselab has previously been studied

from a resource-rational perspective (Gabaix et al., 2006), the meta-MDP framework

provides a new set of computational tools for understanding heuristics through this lens.

The result is that we can formally identify heuristics that achieve an optimal trade-off

between computational costs and decision quality. By automatically deriving heuristics

from a normative model, we can avoid the cumbersome and inexact process of searching for

heuristics by hand that psychologists have relied on in the past.

In addition to offering a normative standard for evaluating heuristics, the

meta-MDP formalism makes our resource-rational framework generally applicable to any

decision-making process. This formalism breaks down decision-making into an arbitrary

discrete set of cognitive operations, and then applies reinforcement learning to this

decision-making process itself. This provides a general-purpose approach for deriving

optimal heuristics that avoids the need to search an intractable combinatorial space of

possible heuristics. It also provides a normative benchmark for evaluating heuristics, that

is, by the total meta-level reward they achieve.

We demonstrated the usefulness of this approach using the Mouselab task, which is

a classic, well-studied process tracing paradigm (Payne et al., 1993). While the Mouselab

task has been widely used to study decision strategies, these studies are typically limited to

around 20 − 40 participants (e.g. (Arieli et al., 2011; Bieleke et al., 2020; Dieckmann &

Rieskamp, 2007; Lohse & Johnson, 1996; Payne et al., 1988; Reisen et al., 2008; Rieskamp

& Otto, 2006)), rarely exceed 100 (Dhar et al., 1999; Mata et al., 2007; Sen, 1999), and the

largest study that the authors are aware of collected 255 participants in a 2 × 2

between-subjects design, which examined the interaction between negative affect and choice

difficulty on decision strategies (Stone & Kadous, 1997). In the present study, we searched

for heuristics across a broad space of decision environments and tested whether strategies

change across the parameters of those environments. This necessitated a large-scale

experiment using the Mouselab task. Future work may apply our meta-MDP framework to
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potentially any kind of decision-making process, providing a general-purpose, normative

approach for understanding how people think and derive strategies for making decisions.

We found that participants used the same four strategies as the resource-rational

model; how did they acquire these heuristics? It is typically assumed that people have a

limited toolkit of general-purpose heuristics that are adapted to real-world environments

(e.g. Gigerenzer & Selten, 2002; Hutchinson & Gigerenzer, 2005; Klein, 2008). More

specifically, heuristics are thought to develop slowly through evolution and/or learning,

rather than being crafted on the fly at decision time. One consequence of this is that, in

addition to limitations in cognitive resources and time, humans have a limited toolkit of

heuristics to deploy—those which they have previously acquired through evolution and

learning (Gigerenzer & Selten, 2002). That these general-purpose heuristics turn out to be

resource-rational in our task highlights the effectiveness of these strategies, and perhaps the

usefulness of the Mouselab task in capturing important characteristics of real-world risky

choice.

In addition to offering a method for deriving optimal heuristics, our approach

provides a more realistic framework for both evaluating and improving human

decision-making. To rigorously evaluate and improve decision-making, we should

understand the agent’s computational goal and how it goes about solving it. The

resource-rational analysis presented here is an attempt to reverse-engineer this decision

process by comparing human behavior to the predictions of our resource-rational model. In

our experiment, people did indeed use the same strategies as the resource-rational model.

Furthermore, the heuristic solutions arising from our framework are inherently sensitive to

the statistics of the decision environment—including the stakes of possible reward, the

dispersion of possible outcomes, and the cost of acquiring information—and people adapted

their strategies to the decision environment in a manner largely consistent with

resource-rationality. While participants’ performance was consistent with rational use of

cognitive resources, they performed below the level of the resource-rational model
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(Figures 6). Crucially, the under-performance persisted even when we modified the

environment in such a way that the assumptions of our resource-rational model were met

(Experiment 2). This suggests that human decision-making still has room for

improvement, even when people’s cognitive constraints are taken into account. Our method

could be used to provide feedback and teach people which heuristics to use and under what

circumstances, in a manner that accounts for their cognitive limitations, providing a

computationally informed path to improving human decision-making (Becker et al., 2022;

Callaway et al., 2022; Consul et al., 2022; Mehta et al., 2022; Skirzyński et al., 2021).

Why did people under-perform relative to the resource-rational strategies? First, it

is important to note that our normative framework should not be mistaken for a

descriptive account. Rather, it provides a prescriptive account of how people ought to

behave in the Mouselab task. It is therefore not surprising that participants earned less

reward than the resource-rational model. Indeed, a key contribution of our approach is

that it allowed us to characterize in detail how and (to some extent) why people deviated

from the resource-rational benchmark. While these sources of under-performance suggest

specific ways that people could improve their decision-making strategies, achieving perfect

resource-rationality may still be unattainable. In fact, given that resource-rational

decision-making is itself an intractable problem (Russell, 2016), this is almost certainly the

case. Importantly, however, this does not undermine the value of the approach, for many of

the same reasons that traditional rational or “computational level” analyses are useful

(Anderson, 2013; Marr, 1982). Providing a rational benchmark for resource-constrained

agents reveals both the strengths and weaknesses of human decision-making, and suggests

important directions for future research.

Another possible explanation for the under-performance, one which we did not

consider above, is that the computations people use are different from those assumed by

our model. Specifically, we assumed an idealized set of cognitive operations based on

Bayesian updating, such that each piece of revealed information is perfectly integrated into
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a posterior belief about the expected payoff of the corresponding gamble. But if that

integration process is itself composed of multiple costly operations (e.g. multiplication and

addition), then people might not—and indeed, should not—fully integrate all revealed

information. This would result in worse performance given the same number of clicks.

Applying our method with a finer-grained set of operations is thus an important direction

for future work. By expanding the set of computational actions available, we can

potentially identify more nuanced strategies and achieve an even closer correspondence to

human behavior.

Overall, our findings show that participants use resource-rational heuristics in an

adaptive manner, suggesting that people have highly effective mechanisms for discovering

and selecting good heuristics. Understanding those mechanisms and how they emerge is an

important direction for future research. On the other hand, the deviations from

resource-rationality suggest that people might experience additional costs and that their

mechanisms for discovering and applying heuristics are imperfect. Future research should

attempt to characterize these costs, investigate how people discover heuristics, and develop

interventions that improve people’s capacity to discover and adaptively choose between

heuristics.



IDENTIFYING RESOURCE-RATIONAL HEURISTICS 57

References

Analytis, P. P., Kothiyal, A., & Katsikopoulos, K. V. (2014). Multi-attribute utility models

as cognitive search engines. Judgment and Decision making, 9 (5), 403–419.

Anderson, J. R. (1991). The adaptive nature of human categorization. Psychological

Review, 98 (3), 409–429.

Anderson, J. R. (2013). The adaptive character of thought. Psychology Press.

Arieli, A., Ben-Ami, Y., & Rubinstein, A. (2011). Tracking decision makers under

uncertainty. American Economic Journal: Microeconomics, 3 (4), 68–76.

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models

using lme4. Journal of Statistical Software, 67 (1), 1–48.

https://doi.org/10.18637/jss.v067.i01

Baucells, M., Carrasco, J. A., & Hogarth, R. M. (2008). Cumulative dominance and

heuristic performance in binary multiattribute choice. Operations research, 56 (5),

1289–1304.

Beach, L. R., & Mitchell, T. R. (1978). A contingency model for the selection of decision

strategies. Academy of management review, 3 (3), 439–449.

Becker, F., Skirzynski, J., van Opheusden, B., & Lieder, F. (2022). Boosting human

decision-making with ai-generated decision aids. Computational Brain & Behavior,

5 (3).

Bell, D. E., Raiffa, H., & Tversky, A. (1988). Decision making: Descriptive, normative, and

prescriptive interactions. cambridge university Press.

Berner, C., Brockman, G., Chan, B., Cheung, V., Dębiak, P., Dennison, C., Farhi, D.,

Fischer, Q., Hashme, S., Hesse, C., et al. (2019). Dota 2 with large scale deep

reinforcement learning. arXiv preprint arXiv:1912.06680.

Bernoulli, D. (1738). Specimen theoriae novae de mensura sortis. Commentarii Academiae

Scientiarum Imperialis Petropolitanae, 5, 175–192.

https://doi.org/10.18637/jss.v067.i01


IDENTIFYING RESOURCE-RATIONAL HEURISTICS 58

Bernoulli, D. (1954). Exposition of a new theory on the measurement of risk, 1738 (english

translation). Econometrica, 22 (1), 23–36. doi:10.2307/1909829

Bettman, J. R., Johnson, E. J., & Payne, J. W. (1990). A componential analysis of

cognitive effort in choice. Organizational behavior and human decision processes,

45 (1), 111–139.

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to

numerical computing. SIAM Review, 59 (1), 65–98.

https://doi.org/10.1137/141000671

Bhatia, S., & Stewart, N. (2018). Naturalistic multiattribute choice. Cognition, 179, 71–88.

Bhui, R., Lai, L., & Gershman, S. J. (2021). Resource-rational decision making. Current

Opinion in Behavioral Sciences, 41, 15–21.

Bieleke, M., Dohmen, D., & Gollwitzer, P. M. (2020). Effects of social value orientation

(svo) and decision mode on controlled information acquisition—a mouselab

perspective. Journal of Experimental Social Psychology, 86, 103896.

Binz, M., Gershman, S. J., Schulz, E., & Endres, D. (2022). Heuristics from bounded

meta-learned inference. Psychological Review.

Birnbaum, M. H., & Gutierrez, R. J. (2007). Testing for intransitivity of preferences

predicted by a lexicographic semi-order. Organizational Behavior and Human

Decision Processes, 104 (1), 96–112.

Bossaerts, P., & Murawski, C. (2017). Computational complexity and human

decision-making. Trends in Cognitive Sciences, 21 (12), 917–929.

Bossaerts, P., Yadav, N., & Murawski, C. (2019). Uncertainty and computational

complexity. Philosophical Transactions of the Royal Society B, 374 (1766), 20180138.

Botvinick, M. M., Niv, Y., & Barto, A. G. (2009). Hierarchically organized behavior and its

neural foundations: A reinforcement learning perspective. Cognition, 113 (3),

262–280.

doi:10.2307/1909829
https://doi.org/10.1137/141000671


IDENTIFYING RESOURCE-RATIONAL HEURISTICS 59

Brown, S., Steyvers, M., & Wagenmakers, E.-J. (2009). Observing evidence accumulation

during multi-alternative decisions. Journal of Mathematical Psychology, 53 (6),

453–462.

Callaway, F., Lieder, F., Das, P., Gul, S., Krueger, P. M., & Griffiths, T. L. (2018). A

resource-rational analysis of human planning. Proceedings of the 40th Annual

Conference of the Cognitive Science Society.

Callaway, F., Gul, S., Krueger, P. M., Griffiths, T. L., & Lieder, F. (2018). Learning to

select computations. Uncertainty in Artificial Intelligence.

Callaway, F., Jain, Y. R., van Opheusden, B., Das, P., Iwama, G., Gul, S., Krueger, P. M.,

Becker, F., Griffiths, T. L., & Lieder, F. (2022). Leveraging artificial intelligence to

improve people’s planning strategies. Proceedings of the National Academy of

Sciences, 119 (12), e2117432119.

Callaway, F., Rangel, A., & Griffiths, T. L. (2021). Fixation patterns in simple choice reflect

optimal information sampling. PLOS Computational Biology, 17 (3), e1008863.

Callaway, F., van Opheusden, B., Gul, S., Das, P., Krueger, P., Lieder, F., &

Griffiths, T. L. (2021). Human planning as optimal information seeking. PsyArXiv,

https://doi.org/10.31234/osf.io/byaqd.

Chater, N., Oaksford, M., Nakisa, R., & Redington, M. (2003). Fast, frugal, and rational:

How rational norms explain behavior. Organizational behavior and human decision

processes, 90 (1), 63–86.

Cohen, M. X., & Ranganath, C. (2007). Reinforcement learning signals predict future

decisions. Journal of Neuroscience, 27 (2), 371–378.

Consul, S., Heindrich, L., Stojcheski, J., & Lieder, F. (2022). Improving human

decision-making by discovering efficient strategies for hierarchical planning.

Computational Brain & Behavior, 5 (2), 185–216.

Czerlinski, J., Gigerenzer, G., & Goldstein, D. G. (1999). How good are simple heuristics?

Simple heuristics that make us smart (pp. 97–118). Oxford University Press.



IDENTIFYING RESOURCE-RATIONAL HEURISTICS 60

Dawes, R. M. (1979). The robust beauty of improper linear models in decision making.

American psychologist, 34 (7), 571–582.

Dawes, R. M., & Corrigan, B. (1974). Linear models in decision making. Psychological

bulletin, 81 (2), 95–106.

Dayan, P., & Daw, N. D. (2008). Decision theory, reinforcement learning, and the brain.

Cognitive, Affective and Behavioral Neuroscience, 8 (4), 429–453.

DeMiguel, V., Garlappi, L., & Uppal, R. (2009). Optimal versus naive diversification: How

inefficient is the 1/n portfolio strategy? The review of Financial studies, 22 (5),

1915–1953.

Dhar, R., Nowlis, S. M., & Sherman, S. J. (1999). Comparison effects on preference

construction. Journal of consumer research, 26 (3), 293–306.

Dieckmann, A., & Rieskamp, J. (2007). The influence of information redundancy on

probabilistic inferences. Memory & Cognition, 35 (7), 1801–1813.

Edwards, W. (1954). The theory of decision making. Psychological bulletin, 51 (4), 380–473.

Einhorn, H. J., & Hogarth, R. M. (1975). Unit weighting schemes for decision making.

Organizational behavior and human performance, 13 (2), 171–192.

Elkan, C. (2003). Using the triangle inequality to accelerate k-means. Proceedings of the

20th international conference on Machine Learning (ICML-03), 147–153.

Fishburn, P. C. (1989). Foundations of decision analysis: Along the way. Management

science, 35 (4), 387–405.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of

eugenics, 7 (2), 179–188.

Frank, M. C. (2013). Throwing out the Bayesian baby with the optimal bathwater:

Response to. Cognition, 128 (3), 417–423.

Gabaix, X., Laibson, D., Moloche, G., & Weinberg, S. (2006). Costly information

acquisition: Experimental analysis of a boundedly rational model. American

Economic Review, 96 (4), 1043–1068.



IDENTIFYING RESOURCE-RATIONAL HEURISTICS 61

Gardner, J. L. (2019). Optimality and heuristics in perceptual neuroscience. Nature

neuroscience, 22 (4), 514–523.

Geisler, W. S. (1989). Sequential ideal-observer analysis of visual discriminations.

Psychological Review, 96 (2), 267–314.

Gershman, S. J., Horvitz, E. J., & Tenenbaum, J. B. (2015). Computational rationality: A

converging paradigm for intelligence in brains, minds, and machines. Science,

349 (6245), 273–278.

Gigerenzer, G. (2008). Rationality for mortals: How people cope with uncertainty. Oxford

University Press.

Gigerenzer, G., & Brighton, H. (2009). Homo heuristicus: Why biased minds make better

inferences. Topics in cognitive science, 1 (1), 107–143.

Gigerenzer, G., & Gaissmaier, W. (2011). Heuristic decision making. Annual review of

psychology, 62, 451–482.

Gigerenzer, G., & Goldstein, D. G. (1996). Reasoning the fast and frugal way: Models of

bounded rationality. Psychological Review, 103 (4), 650–669.

Gigerenzer, G., & Goldstein, D. G. (1999). Betting on one good reason: The take the best

heuristic. Simple heuristics that make us smart (pp. 75–95). Oxford University

Press.

Gigerenzer, G., & Selten, R. (2002). Bounded rationality: The adaptive toolbox. MIT press.

Gigerenzer, G., & Todd, P. M. (1999). Simple heuristics that make us smart. Oxford

University Press, USA.

Gilovich, T., Griffin, D., & Kahneman, D. (2002). Heuristics and biases: The psychology of

intuitive judgment. Cambridge university press.

Glimcher, P. W. (2011). Understanding dopamine and reinforcement learning: The

dopamine reward prediction error hypothesis. Proceedings of the National Academy

of Sciences, 108 (Supplement 3), 15647–15654.



IDENTIFYING RESOURCE-RATIONAL HEURISTICS 62

Glöckner, A., & Betsch, T. (2008). Multiple-reason decision making based on automatic

processing. Journal of experimental psychology: Learning, memory, and cognition,

34 (5), 1055.

Goldstein, D. G., & Gigerenzer, G. (2002). Models of ecological rationality: The recognition

heuristic. Psychological Review, 109 (1), 75–90.

Griffiths, T. L., Callaway, F., Chang, M. B., Grant, E., Krueger, P. M., & Lieder, F.

(2019). Doing more with less: Meta-reasoning and meta-learning in humans and

machines. Current Opinion in Behavioral Sciences, 29, 24–30.

Griffiths, T. L., Lieder, F., & Goodman, N. D. (2015). Rational use of cognitive resources:

Levels of analysis between the computational and the algorithmic. Topics in

cognitive science, 7 (2), 217–229.

Griffiths, T. L., Vul, E., & Sanborn, A. N. (2012). Bridging levels of analysis for

probabilistic models of cognition. Current Directions in Psychological Science,

21 (4), 263–268.

Hawkins, G. E., & Heathcote, A. (2021). Racing against the clock: Evidence-based versus

time-based decisions. Psychological Review, 128 (2), 222–263.

Hay, N., Russell, S., Tolpin, D., & Shimony, S. (2012). Selecting computations: Theory and

applications. In N. de Freitas & K. Murphy (Eds.), Proceedings of the 28th

Conference on Uncertainty in Artificial Intelligence. AUAI Press.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W.,

Horgan, D., Piot, B., Azar, M., & Silver, D. (2018). Rainbow: Combining

improvements in deep reinforcement learning. Proceedings of the AAAI Conference

on Artificial Intelligence, 32 (1).

Hogarth, R. M., & Karelaia, N. (2005). Ignoring information in binary choice with

continuous variables: When is less “more”? Journal of Mathematical Psychology,

49 (2), 115–124.



IDENTIFYING RESOURCE-RATIONAL HEURISTICS 63

Hogarth, R. M., & Karelaia, N. (2006). “take-the-best” and other simple strategies: Why

and when they work “well” with binary cues. Theory and Decision, 61 (3), 205–249.

Hogarth, R. M., & Karelaia, N. (2007). Heuristic and linear models of judgment: Matching

rules and environments. Psychological Review, 114 (3), 733–758.

Holte, R. C. (1993). Very simple classification rules perform well on most commonly used

datasets. Machine learning, 11 (1), 63–90.

Howard, R. A. (1968). The foundations of decision analysis. IEEE transactions on systems

science and cybernetics, 4 (3), 211–219.

Hutchinson, J. M., & Gigerenzer, G. (2005). Simple heuristics and rules of thumb: Where

psychologists and behavioural biologists might meet. Behavioural processes, 69 (2),

97–124.

Huygens, C. (1657). De ratiociniis in ludo aleae. Ex officinia J. Elsevirii.

Huygens, C. (1714). Christiani hugenii libellus de ratiociniis in ludo aleae: Or, the value of

all chances in games of fortune; cards, dice, wagers, lotteries, &c. mathematically

demonstrated (english translation). S. Keimer.

Jarvstad, A., Rushton, S. K., Warren, P. A., & Hahn, U. (2012). Knowing when to move on:

Cognitive and perceptual decisions in time. Psychological Science, 23 (6), 589–597.

Johnson, E. J., & Payne, J. W. (1985). Effort and accuracy in choice. Management science,

31 (4), 395–414.

Kahneman, D., Slovic, S. P., Slovic, P., & Tversky, A. (1982). Judgment under uncertainty:

Heuristics and biases. Cambridge university press.

Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk.

Econometrica, 47 (2), 263–291. https://doi.org/10.2307/1914185

Katsikopoulos, K. V. (2011). Psychological heuristics for making inferences: Definition,

performance, and the emerging theory and practice. Decision analysis, 8 (1), 10–29.

https://doi.org/10.2307/1914185


IDENTIFYING RESOURCE-RATIONAL HEURISTICS 64

Katsikopoulos, K. V., & Martignon, L. (2006). Naive heuristics for paired comparisons:

Some results on their relative accuracy. Journal of Mathematical Psychology, 50 (5),

488–494.

Keeney, R. L., Raiffa, H., & Meyer, R. F. (1993). Decisions with multiple objectives:

Preferences and value trade-offs. Cambridge university press.

Kimball, G. E. (1958). A critique of operations research. Journal of the Washington

Academy of Sciences, 48 (2), 33–37.

Klein, G. (2008). Naturalistic decision making. Human factors, 50 (3), 456–460.

Kwisthout, J., Wareham, T., & van Rooij, I. (2011). Bayesian intractability is not an

ailment that approximation can cure. Cogn. Sci., 35 (5), 779–784.

Lee, M. D., & Cummins, T. D. (2004). Evidence accumulation in decision making: Unifying

the “take the best” and the “rational” models. Psychonomic bulletin & review,

11 (2), 343–352.

Lee, M. D., Loughlin, N., & Lundberg, I. B. (2002). Applying one reason decision-making:

The prioritisation of literature searches. Australian Journal of Psychology, 54 (3),

137–143.

Lewis, R. L., Howes, A., & Singh, S. (2014). Computational rationality: Linking mechanism

and behavior through bounded utility maximization. Topics in cognitive science,

6 (2), 279–311.

Lichtenberg, J. M., & Şimşek, Ö. (2017). Simple regression models. Imperfect decision

makers: Admitting real-world rationality, 13–25.

Lieder, F., & Griffiths, T. L. (2017). Strategy selection as rational metareasoning.

Psychological Review, 124 (6), 762–794.

Lieder, F., & Griffiths, T. L. (2020). Resource-rational analysis: Understanding human

cognition as the optimal use of limited computational resources. Behavioral and

Brain Sciences, 43.



IDENTIFYING RESOURCE-RATIONAL HEURISTICS 65

Lohse, G. L., & Johnson, E. J. (1996). A comparison of two process tracing methods for

choice tasks. Organizational Behavior and Human Decision Processes, 68 (1), 28–43.

Ludvig, E. A., Bellemare, M. G., & Pearson, K. G. (2011). A primer on reinforcement

learning in the brain: Psychological, computational, and neural perspectives.

Computational neuroscience for advancing artificial intelligence: Models, methods

and applications, 111–144.

Manzini, P., & Mariotti, M. (2012). Choice by lexicographic semiorders. Theoretical

Economics, 7 (1), 1–23.

Marr, D. (1982). Vision: A computational investigation into the human representation and

processing of visual information. W.H. Freeman.

Martignon, L., & Hoffrage, U. (2002). Fast, frugal, and fit: Simple heuristics for paired

comparison. Theory and Decision, 52 (1), 29–71.

Martignon, L., Hoffrage, U., Group, A. R., et al. (1999). Why does one-reason decision

making work. Simple heuristics that make us smart, 119–140.

Mata, R., Schooler, L. J., & Rieskamp, J. (2007). The aging decision maker: Cognitive

aging and the adaptive selection of decision strategies. Psychology and aging, 22 (4),

796–810.

Maule, A., & Hodgkinson, G. (2002). Heuristics, biases and strategic decision making.

Psychologist, 15 (2), 68–71.

Mehta, A., Jain, Y. R., Kemtur, A., Stojcheski, J., Consul, S., Tošic, M., & Lieder, F.

(2022). Leveraging machine learning to automatically derive robust decision

strategies from imperfect knowledge of the real world. Computational Brain &

Behavior.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015).

Human-level control through deep reinforcement learning. Nature, 518 (7540),

529–533.



IDENTIFYING RESOURCE-RATIONAL HEURISTICS 66

Morgenstern, O., & Von Neumann, J. (1953). Theory of games and economic behavior.

Princeton university press.

Newell, A., Simon, H. A. et al. (1972). Human problem solving (Vol. 104). Prentice-hall

Englewood Cliffs, NJ.

Niv, Y. (2009). Reinforcement learning in the brain. Journal of Mathematical Psychology,

53 (3), 139–154.

Nowozin, S. (2014). Optimal decisions from probabilistic models: The

intersection-over-union case. Proceedings of the IEEE conference on computer vision

and pattern recognition, 548–555.

Papadimitriou, C. H., & Tsitsiklis, J. (1986). Intractable problems in control theory. SIAM

journal on control and optimization, 24 (4), 639–654.

Parpart, P., Jones, M., & Love, B. C. (2018). Heuristics as bayesian inference under

extreme priors. Cognitive psychology, 102, 127–144.

Payne, J. W. (1976a). Heuristic search processes in decision making. ACR North American

Advances.

Payne, J. W. (1976b). Task complexity and contingent processing in decision making: An

information search and protocol analysis. Organizational behavior and human

performance, 16 (2), 366–387.

Payne, J. W., Bettman, J. R., & Johnson, E. J. (1988). Adaptive strategy selection in

decision making. Journal of experimental psychology: Learning, Memory, and

Cognition, 14 (3), 534–552.

Payne, J. W., Bettman, J. R., & Johnson, E. J. (1993). The adaptive decision maker.

Cambridge university press.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,

Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn:

Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.



IDENTIFYING RESOURCE-RATIONAL HEURISTICS 67

Puterman, M. L. (2014). Markov decision processes: Discrete stochastic dynamic

programming. John Wiley & Sons.

R Core Team. (2020). R: A language and environment for statistical computing. R

Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/

Rae, B., Heathcote, A., Donkin, C., Averell, L., & Brown, S. (2014). The hare and the

tortoise: Emphasizing speed can change the evidence used to make decisions. Journal

of Experimental Psychology: Learning, Memory, and Cognition, 40 (5), 1226–1243.

Reisen, N., Hoffrage, U., & Mast, F. W. (2008). Identifying decision strategies in a

consumer choice situation. Judgment and decision making, 3 (8), 641–658.

Rescorla, R. A. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness

of reinforcement and nonreinforcement. Current research and theory, 64–99.

Rieskamp, J., & Otto, P. E. (2006). Ssl: A theory of how people learn to select strategies.

Journal of Experimental Psychology: General, 135 (2), 207–236.

RStudio Team. (2019). Rstudio: Integrated development environment for r. RStudio, Inc.

Boston, MA. http://www.rstudio.com/

Russell, S. (2016). Rationality and Intelligence : A Brief Update. In Müller V. C. (Ed.),

Fundamental Issues of Artificial Intelligence (pp. 1–21).

Russell, S., & Wefald, E. (1991a). Do the right thing: Studies in limited rationality. MIT

press.

Russell, S., & Wefald, E. (1991b). Principles of metareasoning. Artificial intelligence,

49 (1-3), 361–395.

Russo, J. E., & Dosher, B. A. (1983). Strategies for multiattribute binary choice. Journal

of Experimental Psychology: Learning, Memory, and Cognition, 9 (4), 676.

Safarzadeh, S., & Rasti-Barzoki, M. (2018). A modified lexicographic semi-order model

using the best-worst method. Journal of Decision Systems, 27 (2), 78–91.

Savage, L. J. (1951). The theory of statistical decision. Journal of the American Statistical

association, 46 (253), 55–67.

https://www.R-project.org/
http://www.rstudio.com/


IDENTIFYING RESOURCE-RATIONAL HEURISTICS 68

Schmidt, F. L. (1971). The relative efficiency of regression and simple unit predictor

weights in applied differential psychology. Educational and Psychological

Measurement, 31 (3), 699–714.

Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and

reward. Science, 275 (5306), 1593–1599.

Seabold, S., & Perktold, J. (2010). Statsmodels: Econometric and statistical modeling with

python. 9th Python in Science Conference.

Sen, S. (1999). The effects of brand name suggestiveness and decision goal on the

development of brand knowledge. Journal of Consumer Psychology, 8 (4), 431–455.

Shah, A. K., & Oppenheimer, D. M. (2008). Heuristics made easy: An effort-reduction

framework. Psychological bulletin, 134 (2), 207–222.

Shteingart, H., & Loewenstein, Y. (2014). Reinforcement learning and human behavior.

Current Opinion in Neurobiology, 25, 93–98.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,

Hubert, T., Baker, L., Lai, M., Bolton, A., et al. (2017). Mastering the game of go

without human knowledge. nature, 550 (7676), 354–359.

Simon, H. A. (1956). Rational choice and the structure of the environment. Psychological

Review, 63 (2), 129–138. https://doi.org/10.1037/h0042769

Simon, H. A. (1972). Theories of bounded rationality. Decision and organization, 1 (1),

161–176.

Simon, H. A. (1990). Invariants of human behavior. Annual review of psychology, 41 (1),

1–20.

Şimşek, Ö. (2013). Linear decision rule as aspiration for simple decision heuristics.

Advances in neural information processing systems, 26, 2904–2912.

Şimşek, Ö., & Buckmann, M. (2015). Learning from small samples: An analysis of simple

decision heuristics. Advances in neural information processing systems, 28,

3159–3167.

https://doi.org/10.1037/h0042769


IDENTIFYING RESOURCE-RATIONAL HEURISTICS 69

Skirzyński, J., Becker, F., & Lieder, F. (2021). Automatic discovery of interpretable

planning strategies. Machine Learning, 2641–2683.

Stigler, G. J. (1961). The economics of information. Journal of political economy, 69 (3),

213–225.

Stone, D. N., & Kadous, K. (1997). The joint effects of task-related negative affect and

task difficulty in multiattribute choice. Organizational behavior and human decision

processes, 70 (2), 159–174.

Sutton, R. S., & Barto, A. G. (1990). Time-derivative models of Pavlovian reinforcement.

In M. Gabriel & J. Moore (Eds.), Learning and computational neuroscience:

Foundations of adaptive networks (pp. 497–537). MIT Press.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Svenson, O. (1979). Process descriptions of decision making. Organizational behavior and

human performance, 23 (1), 86–112.

Thorngate, W. (1980). Efficient decision heuristics. Behavioral Science, 25 (3), 219–225.

Tversky, A. (1969). Intransitivity of preferences. Psychological Review, 76 (1), 31–48.

Tversky, A. (1972). Elimination by aspects: A theory of choice. Psychological Review,

79 (4), 281–299.

Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases.

science, 185 (4157), 1124–1131.

Van Rossum, G., & Drake, F. L. (2009). Python 3 reference manual. CreateSpace.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,

Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,

Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R.,

Larson, E., . . . SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental Algorithms

for Scientific Computing in Python. Nature Methods, 17, 261–272.

https://doi.org/10.1038/s41592-019-0686-2

https://doi.org/10.1038/s41592-019-0686-2


IDENTIFYING RESOURCE-RATIONAL HEURISTICS 70

Von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior.

Theory of games and economic behavior. Princeton university press.

Wübben, M., & Wangenheim, F. v. (2008). Instant customer base analysis: Managerial

heuristics often “get it right”. Journal of Marketing, 72 (3), 82–93.

Zanakis, S. H., Solomon, A., Wishart, N., & Dublish, S. (1998). Multi-attribute decision

making: A simulation comparison of select methods. European journal of operational

research, 107 (3), 507–529.

Zednik, C., & Jäkel, F. (2016). Bayesian reverse-engineering considered as a research

strategy for cognitive science. Synthese, 193 (12), 3951–3985.



IDENTIFYING RESOURCE-RATIONAL HEURISTICS 71

Appendix A

Bayesian meta-level policy search

Bayesian meta-level policy search (BMPS) is a reinforcement learning algorithm for solving

meta-level MDPs that we recently developed to address the computational challenges of

strategy discovery (Callaway, Gul, et al., 2018). BMPS rests on the idea that the value of

computation can be approximated by interpolating between the myopic value of

computation, the value of perfect information about the gamble that the computation is

reasoning about, and the value of perfect information. Concretely, the BMPS policy is

defined as

(A1)πmeta(b) = arg max
c

w1 · VOI1(b, c) + w2 · VPIsub(b, c) + w3 · VPI(b) − w4 · cost(c),

subject to the constraints that w1, · · · , w3 ∈ [0, 1], w1 + w2 + w3 = 1, and w4 > 0. BMPS

identifies a set of weights that maximize the expected return (total meta-level reward) of

this policy.

To compute optimal risky choice strategies, we applied BMPS to the meta-level

MDP model of decision-making in the Mouselab paradigm described in the main text. To

achieve this, we instantiated the four features that BMPS uses to approximate the value of

computation as follows: First, the value of perfect information is the expected

improvement in decision quality if one knew the exact values of every gamble, rather than

deciding based on the current belief state. Formally, it is

VPI(bt) = E
v∗

g∼bt

[
max

g
v∗

g

]
− max

g
b

(µ)
t,g , (A2)

where the expectation over the true gamble values, v∗
g , is taken with respect to the

current belief state, capturing the fact that previous computation informs how valuable

future computation will be (e.g., if one gamble is already almost certainly better than the

others, there is little value to computing more).

Second, the myopic value of information is the expected improvement in decision
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quality if one executes one more computation before making a decision. Formally, it is

VOI1(bt, c) = E
bt+1∼Tmeta(bt,c·)

[
max

g
b

(µ)
t+1,g

]
− max

g
b

(µ)
t,g . (A3)

The previous two features provide upper and lower bounds on the true value of

executing a computation, based on upper and lower bounds on the amount of future

computation that could be executed. We can also consider the value of intermediate

amounts of computation; in particular, we use the value of learning the exact value of just

one gamble, the one that the considered computation is reasoning about. This is defined as

the expected maximum of the true value of that gamble and the current expected value of

the best alternative gamble. Formally,

VPIsub(bt, c) = E
v∗

gc |bt,gc

[
max

{
v∗

gc
, max

g ̸=gc

b
(µ)
t,g

}]
− max

g
b

(µ)
t,g , (A4)

where gc is the gamble that computation c is reasoning about and v∗gc is the (hypothetical)

true value of that gamble. As before the expectation is taken with respect to the current

belief about the value of the gamble, and we subtract the value of deciding immediately.

Finally, the cost of computation feature was simply

cost(c) = −rmeta(·, c) = λ. (A5)

We applied BMPS separately to each of the fifty meta-level MDPs modelling the

fifty types of decision environments used in the experiment. For each environment, we ran

500 iterations of Bayesian optimization. In each iteration the algorithm chooses a

candidate weight vector, and estimates the performance of the corresponding policy

averaged across 10,000 simulated decisions. Each of the 10,000 decisions is made in an

environment with independent payoff values and outcome probabilities (sampled according

to the environment’s α and σ parameters). The algorithm then returns the weight vector
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with highest expected performance. See Callaway, Gul, et al. (2018) for details of the

BMPS optimization procedure.
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Appendix B

Identification of resource-rational decision strategies

We took a data-driven approach to discovering heuristic click sequences by applying the

k-means clustering algorithm to vectors of click sequences. Here we show the

correspondence between cluster labels and heuristic strategies, which are independently

defined.

Figure B1
Confusion matrices showing agreement between k-means cluster labels and strategy
definitions for the resource-rational model (left) and participant trials (right) in
Experiment 1. Annotations show the percentage of total trials accounted for by each
strategy pair, with colors indicating the trial count. Cohen’s κ = 0.572, 95%CI[0.571, 0.572]
for the model, and κ = 0.572, 95%CI[0.571, 0.572] for participants.

We used k = 4 clusters for the model and k = 5 for participants, to account for the

large portion of random gambling in participants, which does not occur in the model. Here

we show centroids from running k-means clustering with values of k ranging from 1 to 12.
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Figure B2
k-means clustering results for model data in Experiment 1. Each row shows the cluster
centroid(s) with a number of clusters, k, ranging from 1 to 12. Columns are organized by
least to most average information gathering (clicks) per cluster, with subplot titles
indicating the percentage of all trial vectors belonging to that cluster. After k = 4 clusters,
the centroid patterns become largely redundant.
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Figure B3
Same as previous figure, but with participant data from Experiment 1.
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Appendix C

Comparison of strategies across environments

This Appendix provides additional details to accompany the sections titled Comparison of

strategies across environments for each experiment.

Experiment 1

We inspected how participants adapted their strategy use frequency to the structure

of the environment. Figure 4 shows the main effect of each of the three parameters of the

environment (stakes, dispersion, and cost) on strategy use frequency for the model and

participants; The figures in this section show strategy use frequencies in all fifty

environments (with 2 levels of stakes × 5 levels of dispersion × 5 levels of cost). They

illustrate overall qualitative correspondence between the model and participants in

adaptive application of strategies according to the statistics of the environment.
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Figure C1
Frequency of SAT-TTB (left panels) and SAT-TTB+ (right panels) across all fifty
experimental conditions, for the model (top panels), participants (middle panels), and a
comparison between the model and participants (bottom panels) from Experiment 1. The
decision environment in each condition is defined by three parameters: σ (variance in
potential reward received), α−1 (homogeneity of the outcome distribution), and λ (number
of points deducted for each piece of information gathered). The results here accompany the
results shown in Figure 4. SAT-TTB+ and SAT-TTB are two heuristics discovered using
our resource-rational method.
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Figure C2
TTB (left panels) and WADD (right panels) strategy use frequencies across all fifty
conditions in the experiment, for the model (top panels), participants (middle panels), and
a comparison between the model and participants (bottom panels) from Experiment 1. TTB
and WADD are two known heuristics that our resource-rational model rediscovered. The
decision environment in each condition is defined by three parameters: σ (variance in
potential reward received), α−1 (homogeneity of the outcome distribution), and λ (number
of points deducted for each piece of information gathered). This figure corresponds to
Figure 4, which shows frequencies for each parameter, collapsed across all others.
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Table C1
Statistical results accompanying Figure 4 from Experiment 1.

Strategy Independent
variable

significant
post-hoc comparisons

effect sizes
(Cohen’s d)

SAT-TTB stakes n/a 0.11
SAT-TTB+ stakes n/a −0.09
TTB dispersion all pairs −0.089, −0.048, −0.083, −0.23
random dispersion all pairs 0.12, 0.051, 0.11, 0.037
SAT-TTB+ cost all pairs 0.045, 0.084, 0.078, 0.13

TTB cost all pairs except
0&8 −0.21, 0.047, 0.13, 0.063

SAT-TTB cost all pairs −0.27, −0.078, −0.16, −0.089
Summary of statistical results accompanying the analyses reported in the section Comparison of
strategies across environments, and shown in Figure 4 from Experiment 1. When applicable,
post-hoc pairwise comparisons were conducted between all 10 pairs of levels of each independent
variable using the Benjamini-Hochberg False Discovery Rate procedure. This test was not
applicable (n/a) when the independent variable had only two levels. The effect sizes for these
comparisons were calculated using Cohen’s d and are presented in ascending order of the
corresponding levels of the independent variable (reporting adjacent pairs only).
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Figure C3
Reducing implicit costs increases the use of costly heuristics and reduces random gambling
for participants in the experimental group in from Experiment 2. Compare with Figure 11,
which omits random gambling.

Experiment 2

To facilitate comparison with Experiment 1 (Figure 4) in the main text, Figure 11 is

conditioned on the same four strategies (that is, omitting random gambling and

unidentified patterns of clicking). Figure C3 includes random gambling to illustrate how

much this decreased in the experimental group compared to the control group. Figure C4

includes all trials.
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Figure C4
Same as previous figure but also including unidentified patterns of clicking from
Experiment 2.
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Appendix D

Rational strategy selection explains variability in choice behavior

This Appendix provides additional figures and statistical results to accompany the sections

Understanding variability in choice behavior for Experiment 1, and Information gathering

and choice behavior for Experiment 2.

Experiment 1

Having shown that human participants use the same heuristics as the

resource-rational model, and adapt them to the environment in much the same way as the

model, we next tested theoretical predictions about how four different behavioral

characteristics ought to vary with the structure of the environment. The first two are the

amount of information gathered and the relative frequency of alternative- versus

attribute-based processing. Figure 5 displays the main effect of each of the three

parameters of the decision environment on each of these variables. Figure D1 displays these

two variables in all fifty environmental conditions. Figures D2 and D3 show the

alternative-variance and attribute-variance. In all cases, participants show a

correspondence to the theoretical predictions of the model as to how these behavioral

markers should adapt to the environment. See the subsection Rational strategy selection

explains variability in choice behavior in the Results section of the main text for details on

how these measurements were defined.

Table D1 summarizes statistical analyses accompanying those presented in the main

text, corresponding to Figures 5, D2, and 6. A two-sample t-test was used to calculate the

effect of stakes on the dependent variables. One-way analyses of variance were run to assess

the effects of dispersion and cost. Post-hoc pairwise comparisons were conducted between

all 10 pairs of levels of each independent variable using two-sample t-tests with the

Tukey-HSD correction for multiple comparisons. The effect sizes for these comparisons

were calculated using Cohen’s d.
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Figure D1
Information-gathering (measured with clicks; left panels) and attribute- versus
alternative-based processing (right panels) shown across all fifty conditions of Experiment 1,
for the model (top row), human participants (middle row), and a comparison between the
model and participants (bottom row). The fifty conditions vary three parameters for a 2x5x5
across-participant design: reward stakes (σ), uniformity of outcome probabilities (α−1), and
the cost per click (λ). The results here accompany the behavioral results shown in Figure 5.
Within each parameter value in Figure 5, results are averaged across all values of other
parameters, whereas in this figure the full results for each of the fifty conditions is shown.
See the subsection Rational strategy selection explains variability in choice behavior in the
Results section of the main text for details on how alternative- versus attribute-based
processing was measured.
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Figure D2
Behavioral correspondence between participants and the resource-rational model from
Experiment 1. Attribute variance (top panels), and alternative variance (bottom panels) for
the resource-rational model and human participants vary across the three parameters of the
experiment: σ (reward stakes), α−1 (dispersion of outcome probabilities), and λ (cost per
click). Error-bars show the 95% CI across participants.



IDENTIFYING RESOURCE-RATIONAL HEURISTICS 86

Figure D3
Alternative and attribute variance for all fifty conditions in from Experiment 1 (all
combinations of σ, α−1, and λ), for the model (top panels), participants (middle panels),
and difference between the two (bottom panels). The results here accompany the behavioral
results shown in Figure 5. Within each parameter value in Figure fig:clicks_processing,
results are averaged across all values of other parameters, whereas in this figure the full
results for each of the fifty conditions is shown.
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Table D1
Statistical results accompanying Figures 5 and D2 from Experiment 1.

Behavioral feature Independent
variable main effect significant

post-hoc comparisons
effect sizes
(Cohen’s d)

Information gathering stakes t(2366) = -2.61,
p = 0.009 n/a −0.11

Information gathering dispersion F (4,2363) = 1.22,
p = 0.3 n/a 0.064, 0.0012, −0.036, 0.11

Information gathering cost F (4,2363) = 293.83,
p <0.001

all pairs except
2&4, 4&8 1.0, 0.32, 0.25, 0.29

Alternative vs. Attribute stakes t(2131) = -2.28,
p = 0.022 n/a −0.099

Alternative vs. Attribute dispersion F (4,2128) = 27.97,
p <0.001

all pairs except
10−1.0&10−0.5, 10.0&100.5 0.16, 0.2, 0.092, 0.23

Alternative vs. Attribute cost F (4,2128) = 31.44,
p <0.001

0&1, 0&2,
0&4, 0&8 0.52, 0.048, −0.012, 0.12

Attribute variance stakes t(2195) = 3.89,
p <0.001 n/a 0.17

Attribute variance dispersion F (4,2192) = 24.74,
p <0.001

all pairs except
10−0.5&10.0, 10.0&100.5 −0.18, −0.1, −0.11, −0.26

Attribute variance cost F (4,2192) = 121.75,
p <0.001

all pairs except
2&4, 4&8 −0.78, −0.2, −0.095, −0.19

Alternative variance stakes t(2195) = 2.93,
p = 0.0035 n/a 0.12

Alternative variance dispersion F (4,2192) = 8.43,
p <0.001

10−1.0&100.5, 10−1.0&101.0,
10−0.5&100.5, 10−0.5&101.0 −0.023, 0.14, 0.13, 0.057

Alternative variance cost F (4,2192) = 115.01,
p <0.001 all pairs −0.7, −0.24, −0.19, −0.26

Summary of statistical results corresponding to the analyses shown in Figures 5 and D2 from
Experiment 1. A two-sample t-test was used to test the main effect of stakes on the dependent
variables. ANOVAs were used to assess the main effects of dispersion and cost. When applicable,
post-hoc pairwise comparisons were conducted between all 10 pairs of levels of each independent
variable using two-sample t-tests with the Tukey-HSD correction for multiple comparisons. These
tests were not applicable (n/a) when the independent variable had only two levels or its main
effect was not significant. The effect sizes for these comparisons were calculated using Cohen’s d
and are presented in ascending order of the corresponding levels of the independent variable
(reporting adjacent pairs only).
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Experiment 2

In Experiment 2 we inspected the same three information processing features as in

Experiment 1: relative alternative- versus attribute-based processing, attribute-variance in

information gathering, and alternative-variance in information processing. As shown in

Figure D4, the pattern of results reflects the overall increase in information gathering in

the experimental group: decreased attribute-variance and alternative-variance (Figure D4B

and C), and less relative emphasis on attribute processing over alternative processing

(which is a result of collecting more information since there are more alternatives than

attributes; Figure D4A). The statistical results of comparing these measurements across

the experimental group and the control group are summarized in Table D2, and similar

results comparing these measurements between the model and each group are presented in

Table D3, showing that for some measures, the behavior of participants in the experimental

group became more similar to the model than that of the control group.
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Table D2
Statistical results accompanying Figure D4 from Experiment 2.

Behavioral feature Condition
(dispersion, cost) t-statistic p-value effect size

(Cohen’s d)

Processing pattern α−1 = 10−0.5

λ = 1 t(90) = 1.39 p = 0.17 d = 0.29

Processing pattern α−1 = 100.5

λ = 1 t(95) = −1.37 p = 0.17 d = −0.28

Processing pattern α−1 = 10−0.5

λ = 4 t(85) = 2.94 p = 0.0042 d = 0.64

Processing pattern α−1 = 100.5

λ = 4 t(86) = 3.43 p < 0.001 d = 0.73

Attribute variance α−1 = 10−0.5

λ = 1 t(92) = −3.23 p = 0.0017 d = −0.67

Attribute variance α−1 = 100.5

λ = 1 t(96) = −0.94 p = 0.35 d = −0.19

Attribute variance α−1 = 10−0.5

λ = 4 t(88) = −3.16 p = 0.0021 d = −0.67

Attribute variance α−1 = 100.5

λ = 4 t(90) = −3.73 p < 0.001 d = −0.78

Alternative variance α−1 = 10−0.5

λ = 1 t(92) = −2.24 p = 0.027 d = −0.46

Alternative variance α−1 = 100.5

λ = 1 t(96) = −2.02 p = 0.046 d = −0.41

Alternative variance α−1 = 10−0.5

λ = 4 t(88) = −2.21 p = 0.03 d = −0.47

Alternative variance α−1 = 100.5

λ = 4 t(90) = −3.54 p < 0.001 d = −0.74

Summary of comparisons between the experimental group and the control group for the
behavioral measures shown in Figure D4 from Experiment 2.
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Table D3
Statistical results accompanying Figure D4 from Experiment 2.

Behavioral feature Condition
(dispersion, cost) t-statistic p-value effect size

(Cohen’s d)

Processing pattern α−1 = 10−0.5

λ = 1 t(90) = 0.94 p = 0.35 d = 0.20

Processing pattern α−1 = 100.5

λ = 1 t(95) = −1.50 p = 0.14 d = −0.31

Processing pattern α−1 = 10−0.5

λ = 4 t(85) = 2.74 p = 0.0076 d = 0.59

Processing pattern α−1 = 100.5

λ = 4 t(86) = 2.91 p = 0.0046 d = 0.62

Attribute variance α−1 = 10−0.5

λ = 1 t(92) = −1.25 p = 0.21 d = −0.26

Attribute variance α−1 = 100.5

λ = 1 t(96) = −0.56 p = 0.58 d = −0.11

Attribute variance α−1 = 10−0.5

λ = 4 t(88) = 2.83 p = 0.0058 d = 0.60

Attribute variance α−1 = 100.5

λ = 4 t(90) = 1.30 p = 0.2 d = 0.27

Alternative variance α−1 = 10−0.5

λ = 1 t(92) = −1.81 p = 0.073 d = −0.37

Alternative variance α−1 = 100.5

λ = 1 t(96) = −2.08 p = 0.04 d = −0.42

Alternative variance α−1 = 10−0.5

λ = 4 t(88) = 0.03 p = 0.97 d = 0.01

Alternative variance α−1 = 100.5

λ = 4 t(90) = −3.11 p = 0.0025 d = −0.65

Summary of comparisons between each group and the model for the behavioral measures shown
in Figure D4 from Experiment 2. That is, these statistics report the comparison between groups
of each group’s absolute deviation from the model, for each dependent variable.
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Figure D4
Behavioral features of information processing from Experiment 2. (A) Consistent with
their over-use of WADD, participants in the experimental condition showed an increase in
alternative vs. attribute processing (with negative values indicating relatively more
attribute-based processing). (B) Participants in the experimental group showed less overall
variance in attribute processing, indicating more use of compensatory strategies that focus
on multiple attributes. (C) The same participants showed decreased alternative variance,
consistent with increased information gathering evenly across alternatives.
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Figure D5
Interaction between cost and dispersion on information gathering. This figure offers a 3D
perspective on Figure D6, showing that information gathering decreases with stakes for low
cost, but increases with stakes for high cost. This include the low stakes condition only from
Experiment 1, for comparison with Experiment 2.
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High dispersion leads to attribute-based processing

Outcome dispersion is an important determinant of information gathering and

strategy selection, with high dispersion favoring attribute-based processing since one

attribute is much more likely than others. Figure 12 shows that information gathering

decreases with dispersion for the experimental group, but increases with dispersion for the

control group, and these contrasting patterns can be seen clearly in Figure D6A. We

performed a follow-up exploratory analysis to see if this pattern is consistent with the

model. The model does indeed predict a two-way interaction between dispersion and cost

on information gathering, whereby information gathering decreases with dispersion at low

cost, but increases with dispersion at high costs. This makes sense intuitively: when the

cost of clicking is low, then lower dispersion merits more clicking since the most likely

attribute is less informative on average, but when the cost of clicking is high, then higher

dispersion allows more frugal clicking that focuses on the most likely attribute. As

predicted by the model, when the cost of clicking is low, participants in the experimental

group click more with low dispersion (t(99) = 3.19, p = 0.0019, d = 0.63), but unlike the

model, for high cost, participants in this group click slightly less with high dispersion

(t(95) = 0.40, p = 0.69, d = 0.08). The opposite pattern holds for the control group:

clicking increases with dispersion for both high cost (as predicted by the model;

t(99) = 2.32, p = 0.022, d = 46) and low cost (unlike the model;

t(103) = 0.63, p = 0.53, d = 0.12).

In both groups, these seemingly contradictory results are, in fact, consistent with

participants moving toward single-attribute-based processing as dispersion increases (as in

TTB, which gathers exactly six samples of information, corresponding to the dashed line in

Figure D6A). For participants in the experimental group who gather too much information

at high cost, information gathering ought to decrease with dispersion, whereas for

participants in the control group who gather too little information at low cost, information

gathering ought to increase with dispersion. These same predictions can be tested using
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Figure D6
Interaction between cost and dispersion on information gathering. (A) The model predicts
a two-way interaction whereby information gathering decreases with dispersion at low cost,
but increases with dispersion at high cost. The same interaction is observed between, but
not within, groups in Experiment 2. The inflection point of the interaction appears to be
the absolute level of information gathering, centered around six clicks (corresponding to
TTB-like attribute-based processing; dashed line). (B) The same predictions are validated
in Experiment 1, with information gathering converging toward six clicks as dispersion
increases, regardless of the cost of clicking. Experiment 1 data are for the low-stakes
condition only, to facilitate comparison with Experiment 2. Error-bars show the 95% CI
across participants.

data from Experiment 1, with five levels of dispersion and cost. As shown in D6B, both the

model and participants do indeed display the predicted pattern of results: information

gathering shifts toward single-attribute processing as dispersion increases, regardless of

cost. Rather, the absolute level of information gathering (around six clicks, dashed line)

determines the point of reversal in the two-way interaction between dispersion and cost on

information gathering. Figure D5 illustrates the same results on a 3D surface.

The same interaction between dispersion and cost for each group in Experiment 2
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can be observed for strategy frequencies (Figure 11) and information processing patterns

(Figure D4). While participants tend to under-perform due to, in part, too little

information gathering (in the control group) or too much information gathering (in the

experimental group), the overall pattern of how they adapt their information processing to

dispersion and cost is broadly consistent with the model’s predictions.
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Appendix E

Performance and Sources of under-performance

This Appendix provides additional details to accompany the sections on Performance and

Sources of under-performance for each experiment in the main text.

Experiment 1

Performance

Here we provide additional statistical results and figures that show performance

when excluding low-effort participants, and performance across all 50 conditions.

Because group under-performance may be driven by low-effort participants who

simply do not perform the task, we measured relative performance after excluding

participants who gambled randomly on more than half of all trials (n = 394 or 16.6% of

participants). As illustrated in Figure E1, the average relative performance of the

remaining participants was 0.643, suggesting that the relatively low performance could not

be fully (or even mostly) explained by low-effort participants (compare to Figure 6). The

model’s relative performance on the trials of attentive participants (0.907) was very similar

to its relative performance on the trials of all participants. This suggests that at least 26%

of the gap between attentive participants’ performance and the performance of the

unboundedly optimal decision strategy are due to people’s sensitivity to click costs (which

we use as a proxy for limited cognitive resources and opportunity costs), whereas at most

74% are due to people’s deviations from resource-rational decision-making. These numbers

are only a lower/upper bound because future improvements to our resource-rational model,

such as taking into account that people’s utility function may be nonlinear (Kahneman &

Tversky, 1979), or the experimental paradigm (see Experiment 2) could further increase

the proportion of people’s under-performance that the model can explain.

For attentive participants, we observed a similar pattern of changes across stakes,

dispersion, and cost, as we did for all participants: B = 0.029, p = 0.0096,
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Figure E1
Performance when excluding participants who gamble randomly on more than half of all
trials from Experiment 1. Performance was measured as the relative reward earned on each
trial (the fraction of the highest possible reward with perfect information, omitting click
costs). Error-bars show the 95% CI across participants.

B = 0.05, p < 0.001, and B = −0.046, p < 0.001, respectively.
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Table E1
Statistical results accompanying Figure 6 from Experiment 1.

Behavioral feature Independent
variable main effect significant

post-hoc comparisons
effect sizes
(Cohen’s d)

Relative performance stakes t(2366) = -2.92,
p = 0.0036 n/a −0.12

Relative performance dispersion F (4,2363) = 42.76,
p <0.001

all pairs except
10−0.5&10.0 −0.22, −0.11, −0.24, −0.19

Relative performance cost F (4,2363) = 50.48,
p <0.001

all pairs except
1&2, 2&4 0.36, 0.16, 0.13, 0.2

Relative performance
(with exclusions) stakes t(1972) = -2.59,

p = 0.0096 n/a −0.12

Relative performance
(with exclusions) dispersion F (4,1969) = 43.29,

p <0.001
all pairs except

10−0.5&10.0 −0.23, −0.17, −0.22, −0.22

Relative performance
(with exclusions) cost F (4,1969) = 38.00,

p <0.001
all pairs except

1&2, 2&4 0.3, 0.14, 0.13, 0.26

Summary of statistical results corresponding to the analyses shown in Figure 6 from
Experiment 1. A two-sample t-test was used to test the main effect of stakes. ANOVAs were used
to assess the main effects of dispersion and cost. When applicable, post-hoc pairwise comparisons
were conducted between all 10 pairs of levels of each independent variable using two-sample t-tests
with the Tukey-HSD correction for multiple comparisons. These tests were not applicable (n/a)
when the independent variable had only two levels or its main effect was not significant. The
effect sizes for these comparisons were calculated using Cohen’s d and are presented in ascending
order of the corresponding levels of the independent variable (reporting adjacent pairs only).
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Figure E2
Relative performance (left panels) and relative performance for the model with an implicit
cost of clicking (right panels) shown across all fifty conditions of Experiment 1, for the
model (top row), human participants (middle row), and the difference between the model
and participants (bottom row). The fifty conditions vary three parameters for a 2x5x5
across-participant design: σ (reward stakes), α−1 (uniformity of outcome probabilities), and
λ (cost per click). The results here accompany the behavioral results shown in Figure 6.
Within each parameter value in Figure S8, results are averaged across all values of other
parameters, whereas in this figure the full results for each of the fifty conditions is shown.
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Figure E3
Same as Figure E2, but excluding participants who gambled randomly on more than half of
all trials (n = 394 of 2,368 participants total) from Experiment 1.
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Sources of under-performance

Here we present the same results presented in the section on Sources of

under-performance for Experiment 1, but excluding low-effort participants who gambled

randomly on more than half of all trials.

Figure E1 shows that, when excluding low-effort participants, the remaining

participants achieved 70.9% of the of the gross performance of the model, which

corresponds to 24.1 fewer points per trial on average. To account for this discrepancy, we

measured four sources of under-performance: implicit costs of information gathering,

imperfect use of the gathered information, imperfect strategy selection, and imperfect

strategy execution. As shown in Figure E4, participants achieved 70.6% (95% CI [68.3,

71.2]) of the net performance of the model, with the four sources of under-performance

respectively accounting for 4.2%, 4.7%, 14.6%, and 5.9% of the remaining 29.4%

performance gap.

We estimated the implicit cost of information gathering as before, to control for the

amount of information collected by participants and the model, resulting in an implicit cost

of clicking of 1.5 points per click when excluding participants, and a 4.2% reduction in

model performance (Figure E4). Notably, the contribution from random gambling drops

considerably to 2.5%, and the overall contribution of imperfect strategy selection drops to

14.6% when excluding participants, which is still higher than the contributions of the other

three sources of under-performance, but not as high as without participant exclusions

(compare to Figure 7). Figures E4 and E5 show the same analyses presented in Figures 7

and 8, respectively, when excluding participants.
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Figure E4
Sources of under-performance when excluding low-effort participants from Experiment 1.
Participants’ net performance was 70.6% (95% CI [68.3, 71.2]) that of the model, with four
distinct sources of the remaining 29.4% gap depicted here.
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Figure E5
Sources of imperfect strategy selection and execution when excluding low-effort participants
from Experiment 1. Each cell states participants’ average reduction of net performance
from a trial-wise comparison of model-participant strategy selection. Off-diagonal cells
correspond to imperfect strategy selection, while on-diagonal values correspond to imperfect
strategy execution. Colors correspond to the number of trial-wise model-participant strategy
pairs. See Figure 8 for details.
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Experiment 2

Performance

Participants in the experimental group on average showed worse imperfect use of

information than participants in the control group (see Figure 14), which indicates that not

all participants were performing the task, since they were given the exact values to make

perfect use of information (i.e., the subjective expected value of each gamble, see Figure 9).

This is actually not surprising, considering that, in Experiment 1, 16.6% of participants

gambled randomly (without gathering information) on more than half of all trials; in

Experiment 2, participants were forced to wait 20s before gambling, and therefore did not

have the option to immediately gamble randomly, as they would in Experiment 1 or in the

control group. To remove poor performers from both groups, we first computed the

fraction of participants in the control group who gambled randomly on more than half of

all trials (27.2%), to find comparable levels of poor performers across experiments (since

the tasks were identical in Experiment 1 and the control group in Experiment 2). We then

used this value to remove the bottom 27.2% of performers from each group in Experiment

2, but since the fraction of trials with random gambling is no longer a valid metric, we

simply excluded participants based on their net performance as a fraction of the model’s

net performance. Figure E6 shows that attentive participants in the experimental group

out-performed attentive participants in the control group in every condition (LD-LC:

t(55) = 2.36, p = 0.022, d = 0.63; LD-HC: t(80) = 4.02, p < 0.001, d = 0.90; HD-LC:

t(78) = 2.26, p = 0.027, d = 0.51; HD-HC: t(73) = 2.30, p = 0.024, d = 0.53).

Sources of under-performance

We computed the same four sources of under-performance after excluding low-effort

participants from both groups. These results are shown in Figures E7 and E8. The fit

implicit cost of gathering information was 0.2 and 1.9 points per click for the experimental

group and the control group, respectively.
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Figure E6
Performance across conditions for each group in Experiment 2 when excluding low-effort
participants. Net relative performance, which accounts for the cost of gathering
information, shows that participants in the experimental condition performed significantly
better than participants in the control group in every condition. Error-bars show 95% CI
across participants.
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Figure E7
Same results as Figure 14 from Experiment 2, but excluding low-effort participants. Overall
performance was 76.4% (95% CI [68.6, 80.4]) and 88.1% (95% CI [82.1, 91.8]) for the
control group and experimental group, respectively.
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Figure E8
Same results as Figure 15 from Experiment 2, but excluding participants who did not
perform the task correctly.
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