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Abstract

When making decisions, we often have more information about some options than others. Previ-
ous work has shown that people are more likely to choose options that they look at more and those
that they are more confident in. But should one always prefer options one knows more about?
Intuition suggests not. Rather, how additional information impacts our preferences should de-
pend critically on how valuable we expect the options to be. Here, we formalize this intuition
in a Bayesian sequential sampling model where attention and confidence influence the precision
of momentary evidence. Our model makes a key prediction: attention and confidence both in-
crease choice probability for better-than-average options, and both decrease choice probability
for worse-than-average options. We confirm this prediction in two experiments, in which we in-
dependently manipulate value and attention. Our results offer a novel perspective on prior work
on the role of attention and confidence in decision-making, showing that people rely on contex-
tual knowledge and uncertainty estimates to adaptively learn about their options and make better
decisions.

There you are, at the overrun ice cream parlor. It is finally
your turn, but despite having glared at the options for the last
10 minutes while waiting in line, you have not decided. The
Stracciatella caught your eye early on, and you kept look-
ing at it, imagining its creamy texture on your tongue occa-
sionally interrupted by crispy chocolate chips. But as you
moved down the line and caught glimpses of new flavors, you
came to find it much less exciting than the pistachio black-
berry swirl you just came to discover. You have never had
that. Should you change your mind now? The Stracciatella
would be good for sure, but the pistachio blackberry swirl
might be amazing! Or, it could be a huge disappointment and
make you sob for that Stracciatella. This example illustrates
two ways in which decision-making is challenged by uncer-
tainty. On one hand, information about our options becomes
available asynchronously, for instance when we sequentially
attend to our options. On the other hand, the quality of avail-
able information varies between options, for instance because
we are more confident in the value of one compared to the
other. How do decision-makers overcome these challenges?

Biases in attention have been ubiquitously linked to biases
in choice; typically, options that are attended more are more
likely to be chosen (Glickman et al., 2018; Usher et al., 2019;
Zilker & Pachur, 2021). The mechanisms underlying atten-
tion’s influence on choice have been formalized most promi-
nently in the attentional drift diffusion model (aDDM; Kra-
jbich et al., 2010). The aDDM extends sequential sampling
models, in which evidence in favor of potential options is
sampled repeatedly and accumulated over time (usually un-
til some threshold is reached; Ratcliff et al., 2016; Bogacz et
al., 2006; Usher & McClelland, 2001; Wang, 2012), with a
parameter that discounts value information from unattended
items. According to this model, choice biases arise from a
multiplicative effect of value and attention on choice, such
that in the appetitive domain, increased attention to an option
increases the likelihood that it will be chosen, whereas in the
aversive domain increased attention to an option decreases the
likelihood that it will be chosen (Armel et al., 2008; Smith &
Krajbich, 2019, but see Cavanagh et al., 2014; Westbrook et
al., 2020; Kaanders et al., 2022).
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Figure 1: Decision-making as sequential Bayesian updating predicts reference-dependent effects of attention and value
confidence on choice. A Prior expectations about the distribution of values in a given context (teal curve) influence how true
item values (blue arrow) are inferred. Increasing amounts of information (increasingly blue curves) refine value estimates
from the initial prior estimate towards the true value (blue arrow). With an unbiased prior, sampling typically increases the
estimated value of better-than-average items (top), but decreases the estimate value for worse-than-average items (bottom).
If, instead, the prior mean is zero (the minimum item value), sampling uniformly increases the momentary value estimate
for all options. Alternatively, without expectations (flat prior), the estimated value will, on average, be exactly the true
value, regardless of how much information is available. B Value confidence reflects the precision of the value representation
underlying sampling. It thus determines the balance between samples and prior. When value confidence is high, samples are
given greater weight and momentary value estimates are updated more. Similar to increasing the number of samples (e.g.
through attention to an item), higher confidence leads to greater updating of the momentary value estimate away from the
prior. Thus, like attention, value confidence has opposite effects for values above (top) and below (bottom) the mean. C
Attention-guided sampling and value confidence similarly affect biases in momentary value estimates. Left panels show how
momentary estimates systematically deviate from true values as a function of sampling and value confidence. Both decrease
biases induced by the prior, hence for the representative (unbiased) prior highlighted in A and B, biases towards the average
decrease with increased sampling and higher value confidence. During value comparison, asymmetries in sampling and value
confidence induce systematic differences in momentary value estimates that translate into value-dependent choice biases.
Increased sampling and higher confidence for one option over the other increase its choice probability when values are above
the mean, but decrease it when values are below the mean.

Our confidence in the value of the available options can
also impact our choices (Lee & Coricelli, 2020; Polanı́a et al.,
2019; Quandt et al., 2021). Lower confidence in an option’s
value reflects greater variability in the value distribution un-
derlying an options’ value estimate (Lebreton et al., 2015),
e.g. based on past experience (Quandt et al., 2021). This of-
ten renders an option less likely to be chosen (Lee & Coricelli,
2020). Furthermore, indicators of lower value confidence are
associated with decreased decision consistency (De Martino

et al., 2013; Polanı́a et al., 2019), slower decision time, and
decreased confidence in the choice that was ultimately made
(Lee & Daunizeau, 2021).

This previous work has shown how biases in attention
and lack of confidence can present a challenge for decision-
makers. Here, we ask how people could flexibly and dy-
namically adapt to these challenges. We propose that both
challenges can be understood as an imbalance or lack of in-
formation about the values of the choice options, and that
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people compensate for this missing or imprecise information
by drawing on expectations or contextual knowledge about
likely option values (c.f. Polanı́a et al., 2019; Khaw et al.,
2017). Formally, we propose a Bayesian extension of classic
sequential sampling models in which attention and value con-
fidence affect the quantity and quality of information about
each item’s value, which is integrated with a prior distribu-
tion to form posterior value estimates for each item.

As illustrated in Figure 1, our model makes the striking pre-
diction that confidence and attention should both have oppo-
site effects on choice probability (increasing vs. decreasing)
when choosing among items better vs. worse than the average
item observed over the course of the experiment. Items that
are attended longer or for which value confidence is higher
should be more likely to be chosen if their value is above
the mean value, but less likely to be chosen if it is below
the mean. We test and confirm this prediction in two exper-
iments using a paradigm that allows us to manipulate atten-
tion independently of value. Taken together our results sup-
port the idea that decision-makers dynamically cope with un-
certainty by considering both what they know and what they
don’t know.

Results

Bayesian evidence accumulation model

Following previous work (Tajima et al., 2016, 2019; Fuden-
berg et al., 2018; Callaway et al., 2021; Jang et al., 2021), we
model value-based decision-making as an iterative process in
which an agent forms posterior estimates of the value of each
choice option based on a sequence of noisy value samples.
Like the aDDM, this class of models assumes that the deci-
sion is based on a sequence of Gaussian samples whose mean
depends on the value of each option in the choice set. How-
ever, while the aDDM assumes that the value samples are ac-
cumulated by simple addition, this newer class of models in-
stead assumes that the samples are accumulated optimally, by
Bayesian inference. Concretely, the agent estimates the true
value of each item by inferring a posterior over the mean of
the distribution from which the samples are drawn. Here, we
present a simplified form of the model; see the Methods for
the full specification.

At each time step, the agent attends to one of the available
options, i, and receives a noisy signal of its subjective value,

xt ∼ Normal(u(i)true,1/τ(i)). (1)

Here, u(i)true is the true value of the attended option and τ(i) is
the precision (inverse variance) of the samples. While pre-
vious work has assumed that this parameter is constant, we
allow it to vary by item. τ(i) thus captures differences in un-
derlying confidence about the value of each option.

Given a sequence of samples and a prior
Normal(µprior,1/λprior), the agent forms a posterior distri-
bution over each item’s value, Normal(µ(i)t ,1/λ

(i)
t ). Here,

µ(i)t is the posterior mean (the estimated value) and λ
(i)
t is

the posterior precision (the certainty in that estimate). The
posterior can be expressed in terms of the total number of
samples taken for the item so far, N(i)

t , and the mean of those
samples, x̄(i)t :

µ(i)t = µprior +
N(i)

t τ
(i)
t

λ
(i)
t

(
x̄(i)t −µprior

)
λ
(i)
t = λprior +N(i)

t τ
(i)

(2)

We have written the posterior in this way to emphasize two
key properties of Bayesian updating. First, the impact of the
samples on estimated value does not depend on their values
per se, but rather on their values relative to one’s expectations.
In particular, the posterior mean begins at the prior mean
and is shifted up or down depending on whether the sample
mean is greater or less than the prior mean. This property,
expectation-dependent updating, is illustrated in Figure 1A.
Second, the degree to which the estimated value is shifted to-
wards the sample mean (and, in expectation, the true value)
depends on the precision of available information, where the
total precision, N(i)

t τ(i), is composed of the quantity (number
of samples, N(i)

t ) and quality (value confidence, τ(i)). This
property, precision-weighted updating is illustrated in Fig-
ure 1B.

The most striking prediction of this model results from the
interaction of these two properties, expectation dependence
and precision weighting: the effect of both attention and con-
fidence should have opposite effects on options whose value
are above vs. below the reference (Figure 1C). In the fol-
lowing sections, we confirm this and other predictions of the
model in two preferential choice experiments.

Considering what we know

We tested the proposal that people leverage knowledge about
the distribution of values in the current choice context to dy-
namically compensate for uncertainty in two behavioral ex-
periments in which participants made binary choices between
consumer items. Most research on attention and choice has
used gaze as a proxy for attention, allowing participants to
freely fixate between the items in the choice set (Orquin &
Mueller Loose, 2013). However, recent research has sug-
gested that this fixation behavior is itself driven by estimated
value and uncertainty (Song et al., 2019; Callaway et al.,
2021; Jang et al., 2021; Li & Ma, 2021). Thus, to directly
measure the causal influence of attention on choice, we in-
stead manipulated fixation time to each item (cf. Armel et al.,
2008; Tavares et al., 2017). Specifically, we controlled the or-
der and duration that each item was displayed on the screen
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(Figure 2A). In both studies, we constructed choice sets to
vary in the relative and overall value of options based on par-
ticipants’ prior single item ratings that serve as estimates of
the true values of the options. In Study 2 participants addi-
tionally provided confidence judgments for the initial value
ratings (as in Lebreton et al., 2015), which we will examine
below.

Our model makes predictions for how choices should de-
viate from utility maximization based on the true values if
participants leveraged expectations about the values of op-
tions. As shown in Figure 1C, the momentary value of an item
systematically deviates from its true value, depending on the
number of samples taken for it and whether its true value is
lower or higher than the reference (prior mean). When choos-
ing among high-value options, more samples should lead to
an advantage for that option, whereas when choosing among
low-value options, more samples should lead to a disadvan-
tage for that option. We would thus expect that, controlling
for the relative value of options, choices would vary as a func-
tion of the interaction between the overall value of ones’ op-
tions and the relative time spent sampling each of them (Fig-
ure 3A). In both studies, the variable of interest is therefore
variability in behavior that is not explained by the value rat-
ings. To test whether this residual variability followed the
predictions made by our model, we regressed choices onto
the relative presentation duration, overall value and their in-
teraction, while controlling for relative value. We will first
examine across both studies the predictions for attention ef-
fects on behavior and subsequently return to Study 2 to test
the predictions for value confidence effects.

Participants’ choices in both studies were sensitive to the
values they had assigned in the earlier phase (Figure 2B).
Participants were increasingly likely to choose either item as
its value increased relative to the other item, bS1 = 3.76, p <
.001,bS2 = 3.39, p < .001. Participants also made decisions
faster when the value difference between items was larger,
bS1 =−0.22, p < .001,bS2 =−0.23, p < .001 and, consistent
with previous work (Frömer et al., 2019; Hunt et al., 2012;
Smith & Krajbich, 2019), when the overall value of items was
higher, bS1 =−0.14, p < .001,bS2 =−0.17, p < .001. Partic-
ipants were also sensitive to the presentation order manipu-
lation. In line with previous findings (Krajbich et al., 2010),
all else being equal, participants were more likely to choose
the first item they had seen, bS1 = 0.10, p < .001,bS2 =
0.19, p < .001, but this bias decreased for longer response
times, bS1 =−0.10, p < .001,bS2 =−0.23, p < .001.

Controlling for all of these standard effects, we then
tested our model’s prediction about the three-way relation-
ship between overall value, relative presentation duration, and
choice: People should be more likely to choose items that
are presented/seen longer when overall value is high, but less
likely to choose them when overall value is low. Confirming
this prediction, we found that presentation duration interacted
with the overall value of the items bS1 = 1.75, p < .001,bS2 =

Figure 2: Paradigm and behavioral results. A In separate
phases of the experiment, participants viewed consumer items
(twice in Study 1, only), rated them, and (in Study 2, only) in-
dicated the confidence in their ratings, and then chose among
sets of two items, each. In the choice phase, items alternated
on the screen until a choice was made or 5s elapsed. Frames
around the options color-coded the corresponding response
(e.g. left index for blue and right index for red). Presen-
tation durations were manipulated between items, indepen-
dently of presentation order, response hand, and value, and
sampled from long (mean 500ms) and short (mean 200 ms)
duration distributions, respectively. B Participants choices in
both studies were sensitive to the relative value of options.
Participants were faster when value difference was greater
(black) and options were more valuable overall (grey).

1.08, p = .016, such that items that were presented longer
were more likely chosen when overall value was high, but
less likely chosen when overall value was low (Figure 3B).

We can further probe the degree to which participants cal-
ibrated their expectations to the distribution of values in their
environment by testing the symmetry and strength of the in-
teraction effect. How attention shapes value (and by exten-
sion, choice) depends on the mean of the prior (cf. Fig-
ure 1A). When people have calibrated their expectations to
the value distribution, i.e., when the prior is unbiased, there
should be no net effect of attention on choice. This is because
attention has opposite effects on items below vs. above the
prior mean, and these effects cancel out when the prior mean
is the true mean item value. We implement two key alterna-
tive models with different priors: The first one assumes a prior
of zero (i.e., that each presented item has minimal value),
which results in a strictly positive effect of presentation du-
ration on momentary value (for positive valance options, as
in our experiment). Such a model was proposed by Jang et al.
(2021) and is roughly consistent with the aDDM (Callaway et
al., 2021). The second alternative assumes a flat prior, so that
value estimates do not rely on expectations at all. As shown
in Figure 3C and D, both models fail to capture the behavioral
pattern: the zero-prior model fails to capture the opposite ef-
fects of presentation duration for high and low value items,
and the flat-prior model fails to capture any interaction be-
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Figure 3: People rely on contextual information about the expected distribution of values. A According to our Bayesian
model, a (relatively) unbiased prior should lead to value-dependent effects of relative presentation on choice, where choice
probability increases with relative presentation for values above the mean, but decreases below the mean (top). An unbiased
prior predicts no main effect of relative presentation on choice (bottom). B Empirical results in both studies are consistent with
the predicted interaction (top) and the corresponding lack of a main effect. C A flat prior, with (near) uniform expectations of
values does not produce the observed interaction. D A zero prior that overestimates the expected values also does not produce
the observed interaction (top) and instead predicts a strong main effect of presentation duration on choice. In all plots, lines
show predictions of fitted linear mixed effects models.

tween overall value and presentation duration.

Comparing Figure 3A and C reveals a clear behavioral sig-
nature of how well-calibrated our participants’ expectations
were. The cross-over point, at which the effect of relative
presentation duration on choice is zero, corresponds to the
prior mean. In the regression, this cross-over point is cap-
tured in the main effect of relative presentation duration on
choice (a positive main effect if the cross-over point is below
the true mean, and negative if above). Visually, we see that
our participants’ cross-over point was just slightly below zero,
indicating a mean just slightly below the true empirical mean.
Consistent with relatively unbiased prior means in both stud-
ies, we found no reliable main effects of presentation duration
on choice bS1 = 0.08, p = .634,bS2 = 0.22, p = .087 (Fig-
ure 3C). With that said, the prior in Study 2 appeared more
biased than in Study 1 as evinced by the larger estimate for
the main effect of presentation duration (and the left-shifted
cross-over point in Figure 4B). Additionally, unlike in Study
1, where the crossover point of the presentation-duration by
overall value interaction is quite close to the empirical mean
value, in Study 2 the crossover point occurred well below the
empirical mean. This indicates that participants in Study 1

had a nearly unbiased prior mean, whereas the prior mean in
Study 2 was more biased.

One plausible explanation for this descriptive difference is
that participants in Study 1 had seen all items a second time
before rating them and were given the opportunity to exclude
unfamiliar items. We omitted this second round in Study 2
to increase the variance in confidence ratings and reduce the
overall testing time. These design choices may have also pre-
vented participants from fully updating a global default prior
to the experimental context. However, our overall pattern of
results shows that in both studies, participants clearly took
information about the contextual distribution of values into
account to some extent, and treated very low value items like
aversive items (Shenhav et al., 2018; cf. Armel et al., 2008).

Taken together, our results are consistent with a Bayesian
updating mechanism that relies on knowledge about the dis-
tribution of values in the task. As outlined earlier, this mech-
anism predicts the same effects for attention and confidence.
We tested this prediction Using the value confidence ratings
in Study 2.
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Considering what we don’t know

In Study 2, we tested how confidence in value ratings of the
items in isolation affected choices among pairs of items. Pre-
vious work has shown that subjective confidence ratings pro-
vide a measure of the precision of one’s value representa-
tion and the samples drawn from it (Lebreton et al., 2015;
Quandt et al., 2021). Just like attention, confidence—or the
lack thereof—should influence the extent to which momen-
tary value estimates are biased towards the prior. Conse-
quently confidence in item values should systematically bias
choices between them.

A basic prediction of our model is that choices should be
more consistent and faster when overall confidence in both
items (set confidence) is higher (Figure 4A). We can com-
pare these predictions to an alternative version of our model
in which confidence determines the sample noise but not how
the samples are integrated. This alternative model also pre-
dicts higher accuracy for higher set confidence, but at the cost
of slower reaction times (see Figure 4C ). Consistent with our
model’s prediction, Figure 4B shows that when their confi-
dence in both items was higher, participants’ choices were
more consistent with their initial ratings (interaction of set
confidence with relative value on choice b = 0.48, p = .019)
and they responded faster (main effect of set confidence on
RT b =−0.02, p = .002).

The key model predictions for relative confidence mir-
ror those for relative presentation duration (Figure 4A, bot-
tom; compare Figure 3A) and are not shared by the equal-
weight updating model (Figure 4C, bottom), demonstrating
that precision-weighted updating is a crucial component for
this prediction. Specifically, we expect that relative confi-
dence should interact with the overall value of options, such
that high-confidence items are more likely to be chosen when
their values are high and less likely to be chosen when their
values are low. Our empirical data confirm this prediction
(Figure 4B; interaction between relative confidence and over-
all value, b= 0.63, p< .001). Consistent with the biased prior
mean mentioned earlier, this effect was not fully symmetric,
so that we additionally observed a positive main effect of rel-
ative confidence on choice, b = 0.11, p < .001.

Our model and task also allow us to explore more subtle de-
viations from optimal Bayesian metacognition. Specifically,
participants may be systematically over- or under-confident,
treating samples as if they are more or less precise than they
truly are. This would lead over-confident participants to make
decisions that are faster and less consistent with their ini-
tial ratings, and under-confident participants to make deci-
sions that are slower and more consistent with their initial
ratings. As a proxy for overconfidence, we computed the av-
erage confidence across all items for each participant. When
we include average confidence as a between-subject regres-
sor in our analyses above, we observed the anticipated pat-
tern. Participants with higher confidence tended to be faster

b =−0.12, p = .060, but less consistent b =−1.13, p = .082.
While this pattern is consistent with our model prediction
(Figure 5), the results do not reach the conventional statis-
tical significance threshold of .05. Given that our sample is
small and our measure of confidence bias is noisy, these re-
sults nevertheless encourage future work better suited to test
this mechanism.

Discussion

When making decisions, we often need to overcome un-
certainty due to attention-related delays in information or
confidence-related imprecision of that information. In the
present study we propose and test a Bayesian-updating ac-
count of value-based decision-making as a solution to these
challenges. Under this theory, the value one assigns to one’s
options depends on two things: 1) one’s expectations about
the distribution of values in a given context, and 2) informa-
tion acquired while considering those options. The relative
weight of each component depends on the precision of that
information. Crucially, the effect of acquiring more precise
information about an option depends on how its true value
compares to the expected value. If the true value is higher
than expected, more information will tend to increase esti-
mated value; but if the true value is lower than expected, more
information will decrease estimated value. This theory thus
makes the unique prediction that both increased attention to
an option and greater confidence in its value will have op-
posite effects on choice probability for items that are below
vs above the average value of options in the current context.
This is exactly what we found.

Our results help shed new light on the role attention plays
in decision-making. Previous work has proposed a multi-
plicative effect of attention and value on choice (Armel et al.,
2008; Krajbich et al., 2010; Smith & Krajbich, 2019), such
that when attended more, appetitive options would be more
likely chosen, whereas aversive items would be less likely
chosen. Indeed, only when appetitive and aversive items were
included, has a full cross-over been previously demonstrated
(Armel et al., 2008). Here we find the same effect, except that
in our studies, the “bad” options were not truly aversive, but
merely mundane—undesirable only when compared to the al-
ternatives (Shenhav et al., 2018). Our finding that the effect
of attention on choice reverses for mundane options therefore
suggest that people can adapt their reference point, consis-
tent with our Bayesian-updating account, as well as context-
dependent range normalization (Khaw et al., 2017) and effi-
cient coding (Polanı́a et al., 2019) accounts of valuation.

Our task allowed us to disentangle two effects that are typ-
ically conflated in studies of the influence of attention on
value-based decision-making: the influence of attention on
choice and the reverse influence of (beliefs about) choice on
attention allocation. One finding that emerged as a result is
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Figure 4: People update proportional to their confidence in the values of their options. A Our Bayesian updating model
predicts more consistent and faster choices when choosing among options with higher value confidence. It also predicts an
interaction of relative confidence with value, such that items with higher value confidence than the alternative should be more
likely to be chosen when values are above the mean, but less likely when they are below the mean. B Empirical data in Study
2 are consistent with all these predictions. C A model in which the precision of the samples varies with value confidence, but
all samples are weighted the same (average confidence) can only capture the increased choice consistency for higher value
confidence, but neither of the other effects. It incorrectly predicts slower response times for higher set confidence and no
effect of relative confidence.

that, unlike several past studies (Cavanagh et al., 2014; Kra-
jbich et al., 2010; Westbrook et al., 2020), we did not find
that attention exerted an independent (additive) influence on
the likelihood of choosing one option or another, over and
above its role in enhancing the influence of value on choice.

There are at least two potential reasons for this discrep-
ancy. First, participants’ expectations may have been biased
in previous studies (Callaway et al., 2021; Jang et al., 2021).
With few exceptions, in past studies only options that were
positively evaluated during the initial rating or bidding phase
were included in the subsequent choice sets. These excluded

items may have nevertheless exerted an influence on subse-
quent expectations about the distribution of option values (cf.
Shenhav et al., 2018). This may have produced a prior closer
to the mean-zero prior we introduced above, which predicts
a main effect of attention on choice. However, this expla-
nation may not be sufficient to explain the additive effect of
attention on choice observed in previous studies, given that
studies which include stimuli that were associated with nega-
tive feedback or mental effort (and were thus clearly aversive)
still observed such an additive effect (Cavanagh et al., 2014;
Westbrook et al., 2020).

7



Figure 5: Overconfidence leads to impulsive choice pat-
tern. A When making the model over- or underconfident, by
varying the mapping between value confidence and the pre-
cision of the samples, it predicts that increasing overconfi-
dence is associated with decreasing choice consistency and
response times. B Our empirical results in Study 2 show the
same pattern, where people with higher levels of confidence
in all value ratings tend to respond less consistently and faster.
These results, while consistent with our model are not signif-
icant at a conventional threshold.

The second potential explanation is that the relationship
between attention and choice is not strictly unidirectional
(Gluth et al., 2018, 2020; Callaway et al., 2021). In par-
ticular, participants in previous studies may have chosen to
sample more information about the option they thought was
best, producing a correlation between attention and choice
through an entirely different causal mechanism (Shimojo et
al., 2003; Kaanders et al., 2022). In our study, we intention-
ally broke the feedback-loop between the decision-process
and gaze by experimentally manipulating presentation du-
ration. Along these lines, it is notable that the only study
that has shown a full crossover effect of attention and value
on choice (Armel et al., 2008) also experimentally manipu-
lated relative attention. In both our study and theirs, disabling
active information-search may have eliminated the positive
main-effect of gaze on choice. Future work will need to ex-
plicitly test this interpretation by comparing free-viewing and
experimenter determined gaze in the same task.

Our value confidence results suggest that even when people
can’t actively seek information about specific options, they in-
tegrate novel information in a controlled way rather than sim-

ply uniformly accumulating information. Value confidence or
equivalent measures are often thought of only as variables that
impact the signal to noise ratio when sampling from represen-
tations with varying precision (Lebreton et al., 2015; Polanı́a
et al., 2019). For example, one recent account suggests that
value confidence determines the drift-rate of the decision-
process within a DDM framework (Lee & Usher, 2021). An-
other account proposes that lower value confidence leads to
increased deliberation time, but does not specify mechanisti-
cally how this would unfold (Lee & Daunizeau, 2021). Our
model builds on this work by showing how people adaptively
adjust their updating based on the precision of their value rep-
resentations, resulting in both increased deliberation time and
also increased reliance on prior knowledge.

Like attention, value confidence has been proposed to con-
fer a choice benefit at least as long as options are appetitive
(Lee & Coricelli, 2020; Li & Ma, 2021). On its face, this pro-
posal resonates with ubiquitous uncertainty aversion, as well
as the idea that confidence itself may be a value signal (Le-
breton et al., 2015). Here we show that, as with attention, the
influence of value confidence on choice critically depends on
a decision-maker’s expectations. This finding speaks against
uncertainty aversion (or its converse, confidence bonus) as the
main driver of choice variability associated with value confi-
dence (Li & Ma, 2021). Rather it suggests a more nuanced
role for value confidence in decision-making.

Our choice paradigm isolated one specific role for value
confidence: weighing information in belief-updating. To
the extent that the decision-maker thinks that the sampled
information is precise (i.e., their confidence is high), they
will adaptively reduce uncertainty by relying on samples ver-
sus expectations. This role parallels similar mechanisms
in learning, where learners rely on response-based versus
expectation-based predictions when they believe their eval-
uations are precise (Frömer et al., 2021). The subjectiv-
ity of confidence is an important aspect that sets our model
apart from alternatives in which confidence merely reflects
the signal-to-noise ratio (Lee & Usher, 2021). Our simula-
tions and empirical results suggests that the extent to which
one updates their beliefs is determined by their subjective be-
liefs about the precision of their samples, rather than merely
the objective precision per se (see also Schiffer et al., 2017).
When simulating mismatches between properties of the sam-
pling distribution and subjective value confidence in our
model, we produced impulsive, inconsistent behavior. We ob-
served the same overall pattern in participants who were more
confident overall. These findings add to a growing literature
highlighting the importance of (well-calibrated) metacogni-
tion for adaptively regulating information-processing (Yeung
& Summerfield, 2012; Frömer et al., 2021).

Value confidence likely plays a broader set of roles in
decision-making beyond only regulating dynamic belief up-
dating. For instance, previous work has shown that value
confidence is used to regulate explore-exploit trade-offs in
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learning contexts (Boldt et al., 2019). When attention is not
experimentally manipulated, but can be freely allocated, we
would expect that value confidence similarly provides inputs
to (gaze-linked) information search. Importantly, the relation-
ship between value confidence and gaze should then depend
on the context (e.g. whether exploration is worthwhile; Wil-
son et al., 2014). It should also depend on the absolute level
of confidence: if confidence is so low that no amount of sam-
pling can increase certainty in the momentary value estimate
to a reasonable level, participants should refrain from sam-
pling an option, as the low expected information gain will not
justify paying the cost of sampling. Unpacking this comple-
mentary role for value confidence in regulating information-
processing in decision-making is an important future direc-
tion.

By controlling when and for how long items could be sam-
pled through gaze, we eliminated the feedback-loop that has
made it difficult to interpret correlations between value, at-
tention, and choice (discussed above). The flipside of this
is that we still need to test predictions of models that both
allow for free gaze allocation and incorporate confidence-
dependent updating. Indeed, confidence could have complex,
time-varying effects on attention allocation. Early in the de-
cision, attending to a high-confidence item produces stronger
and thus more valuable information. Later in the decision,
however, the value of the high-confidence item will have a
very precise estimate, making additional attention to it super-
fluous. By isolating the downstream effects of confidence on
choice, we have provided the foundation for understanding
the full cyclic process.

Another open question is whether goal-directed informa-
tion search is limited to simply which option is considered, or
in fact extends to what type of information is considered about
a given option. Most sequential sampling models assume that
samples are drawn independently from an underlying distri-
bution, but this need not be so. In the context of memory
retrieval, during free recall, people are more likely to sequen-
tially sample items that share features (e.g. category) than
dissimilar items (Bousfield & Cohen, 1955), perhaps due to
spreading of activation that facilitates the retrieval of related
items. To account for these findings, Zhu et al. (2018) pro-
pose a sequential sampling model in which successive sam-
ples are drawn from a Markov chain, and are hence autocorre-
lated. Based on this work, we would expect autocorrelation in
value-based sampling as well. For example, when sampling
one positive feature about the tea pot in Figure 1 (nice color),
one would be more likely to sample other related positive fea-
tures about it (great shape), rather than a less related feature
or a negative one (might drip).

Importantly, this autocorrelation might be biased by goals
and momentary beliefs, just like gaze (Gluth et al., 2020; Call-
away et al., 2021; Jang et al., 2021) and explicit information
gathering (Hunt et al., 2016). Reports of confirmation bias
abound (Kaanders et al., 2022; Sharot & Garrett, 2016; Tal-

luri et al., 2018), and classic work on framing (Morewedge
& Kahneman, 2010), as well as recent work on choice goals’
influence on decision making (Frömer et al., 2019; Sepulveda
et al., 2020), show that people’s prior beliefs and the type of
question they are trying to answer shape the degree to which
they integrate information and seek it to begin with. How
these mechanisms shape value-based choices remains to be
understood.

One canonical finding that might be explained by biased
memory sampling is the speeding of choices among options
that are more rather than less congruent with one’s choice
goal (Frömer et al., 2019; Hunt et al., 2012; Sepulveda et
al., 2020; Smith & Krajbich, 2019). Different proposals have
been put forward to explain the overall value effect on choice.
One account explains the effect through attentional biases
(Sepulveda et al., 2020; Smith & Krajbich, 2019), whereas
in other accounts these effects emerge from the dynamics
of the decision-process without considering gaze variability
(Frömer et al., 2019; Hunt et al., 2012). In a reference-
dependent value coding scheme as demonstrated here, none
of the current models are able to account for the overall value
effect on decision time. In fact, our model can only pro-
duce it due to its slightly biased prior and the simulated ef-
fects are much weaker than those found in the data. This ten-
sion between predicted and observed findings might suggest
that caution is warranted in assuming a role for reference-
dependence in this process. However, given the convergent
evidence of reference-dependence from our remaining results
and other lines of work (Shenhav et al., 2018; Khaw et al.,
2017; Polanı́a et al., 2019), a more plausible alternative is
that goal-congruent information is sampled with greater ease,
at a faster rate than goal-incongruent information, in line with
confirmation and positive evidence biases in information sam-
pling (Hunt et al., 2016; Kaanders et al., 2022; Talluri et al.,
2018; Sharot & Garrett, 2016). Future work will need to ex-
plicitly manipulate prior expectations and choice goals to ar-
bitrate between different accounts.

Our findings have implications for interpretations of neu-
ral correlates of value in value-based choice. Traditionally,
neuroeconomics has focused on valuation and evidence ac-
cumulation when interpreting neural correlates of value, for
instance in dorsal anterior cingulate cortex (Hare et al., 2011;
Pisauro et al., 2017). However, these regions have also been
associated with goal-directed regulation of information gain
(McGuire et al., 2014; O’Reilly et al., 2013), and cognitive
control more generally (Shenhav et al., 2013). Our results
contribute to a growing consensus that value-based choice
draws on those regulatory mechanisms, suggesting that the
observed activity in dACC could reflect information regula-
tion rather than accumulated evidence per se (Hunt et al.,
2018; Hunt, 2021; Hunt et al., 2021; Kaanders et al., 2020;
Monosov, 2017).

By characterizing the specific quantities associated with in-
formation regulation in the service of decision making (e.g.
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value confidence, estimate precision, changes in choice cer-
tainty), our model can inform specific predictions for neural
activity and crucially how it unfolds over time (c.f. Frömer et
al., 2021; McGuire et al., 2014; O’Reilly et al., 2013). Test-
ing these predictions will allow us to re-evaluate and extend
beyond previously identified correlates of evidence accumu-
lation in value-based choice (e.g., Frömer & Shenhav, 2019;
Pisauro et al., 2017; Polania et al., 2014).

A central motivation for the decision sciences is to under-
stand why decision-making is so often flawed or irrational and
to use that knowledge to improve decision-making. View-
ing decision-making as an active process, involving informa-
tion search and regulation of information-processing shaped
by goals and metacognition, provides us with a whole new
set of levers to achieve this goal. Perhaps if we understand
how these control mechanisms work, we can help decision-
makers and learners alike by teaching them to consider and
control what they know and what they don’t know.

Methods

Experiment
Participants

Participants were recruited from Brown University and the
general community. Thirty participants (19 female) with an
average age of 19.6 (SD = 1.8) took part in Study 1. Thirty
one participants (23 female) with an average age of 21.1 (SD
= 3.5) took part in Study 2. Participants gave informed con-
sent and were remunerated with 10 USD per hour or course
credits. The studies were approved by Brown University’s
institutional review board.

Task and Procedure

In Study 1, the experiment consisted of three phases: 1) item
familiarization, 2) item rating, and 3) choice. During item
familiarization, participants viewed consumer items on the
screen individually in a self-paced manner. Items were pre-
sented in grey scale and short labels were displayed below
the items. Following a first round of viewing all items, partic-
ipants were presented with each item a second time without
labels and asked to indicate items that they could not iden-
tify without a label present. These items were removed from
subsequent phases of the experiment. In the subsequent rat-
ing phase participants were asked to rate how much they liked
the remaining items individually on a scale from 0 (not at all)
to 10 (a great deal). They were encouraged to use the entire
range of values rather than just the extremes. Based on the in-
dividual ratings, we constructed personalized choice sets that
varied in the relative and overall values of options (Shenhav
& Buckner, 2014; Shenhav & Karmarkar, 2019; Frömer et
al., 2019; Shenhav et al., 2018). Depending on the range of

values participants provided and the number of items they ex-
cluded during familiarization, the number of choice sets we
could generate varied between 128 and 240 (Median = 228,
M = 222, SD = 24).

In the choice phase, participants viewed pairs of options
alternating centrally on the screen inside frames that color
coded the corresponding response hands (index fingers placed
on A and J keys on a standard keyboard). We manipulated the
relative presentation duration of items so that one item was al-
ways presented longer than the other. While items alternated
on the screen, specific durations on each turn were drawn
from different distributions for long (M = 500 ms, SD = 100
ms) and short presentations (M = 200, SD = 50); these distri-
butions were informed by previous work (Frömer & Shenhav,
2019). Presentation duration, response hand, and order of
presentation varied independently. Items alternated until par-
ticipants made a choice or 5s had elapsed. After making their
choice, participants were presented with the item they chose
for one second and allowed to reverse their choice within
750 ms of feedback presentation (5.6% of all trials). Par-
ticipants performed multiple rounds of practice with empty
frames only, letters, and with practice items, to learn the but-
ton mapping and get comfortable with the task.

Study 2 differed from Study 1 in three ways: 1) partici-
pants performed only the first round of familiarization and no
items were excluded, 2) in the rating phase individual item
ratings were immediately followed by a prompt to indicate
the confidence in that rating, and 3) item ratings were re-
peated after the choice phase. We removed the second round
of familiarization to reduce overall testing time and to include
items with very low value confidence. Participants rated their
confidence in the value ratings on a scale from 1 (not at all)
to 5 (very) by pressing the corresponding number key on a
keyboard. The second round of value ratings following the
choice phase did not include confidence ratings. Participants
performed 240 choice trials unless their rating distributions
afforded less (Median = 240, Mean = 236, SD = 7). On aver-
age they indicated they had made an error 5.9% of all trials.

Analyses

Our primary interest was participants’ behavior during the
choice phase. We analyzed the probability of choosing the
first item using generalized mixed effects models with a bino-
mial link function, and RTs using linear mixed effects mod-
els using lme4 (Bates, Maechler, et al., 2015) in R (Version
3.6.1). We modeled random intercepts for participants and in-
cluded random slopes for predictors if supported by the data
(Bates, Kliegl, et al., 2015; Matuschek et al., 2017). We per-
formed model selection using the buildmer package. Choices
that were made before the second item was seen were ex-
cluded from all analyses (0.7% in Study 1, 0.3% in Study 2).
The remaining choices were analyzed with relative value (first
item value minus second item value), overall value (average
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value of both items in a set), relative presentation duration
(proportion of time the first item was on the screen), and RT
as an index of total decision time. To test how relative presen-
tation duration influences values’ relationship with choice be-
havior, we modeled interactions between relative presentation
duration and value regressors. We analyzed response times
with value difference (absolute difference between item val-
ues) and overall value. In Study 2, we further included three
variables to assess the impact of value confidence on choice:
relative confidence (confidence in the first item value minus
confidence in the second item value), set confidence (mean
confidence in both items, centered within participants), and
confidence bias as a between subject regressor (average con-
fidence of a participant across all items). To test how value
confidence impacts values’ relationship with choice behav-
ior, we modeled interactions between confidence and value
regressors.

Model
Here we give further details on the implementation of the
model.

Attention

In the simplified model presented in the main text, we as-
sumed that attention controls which item is sampled at each
time step. The full model, however, allows for partial atten-
tion to the non-presented item. Following Jang et al. (2021),
we implement partial attention as reduced precision. Thus, at
each time step, the agent receives one signal for each item,

x(i)t ∼ Normal

(
u(i)true,

1

θ
(i)
t τ(i)

)
, (3)

where θ
(i)
t captures the degree of attention to item i at time t.

It is defined:

θ
(i)
t =


1 if i is attended at time t
θ if i has been attended at some t ′ < t
0 if i has not been attended before t

(4)

That is, the precision of samples for the unattended item is
discounted by a multiplicative factor, θ, a free parameter be-
tween 0 and 1. On the first presentation, the unattended item
has zero precision as it has not been seen yet, and so samples
of its value cannot possibly be drawn.

To account for partial attention in the posterior (Equa-
tion 2), we generalize N(i)

t (previously the number of sam-
ples) to a continuous quantity capturing the amount of atten-
tion paid to the item so far,

N(i)
t =

t

∑
j=1

θ
(i)
t . (5)

Similarly, x̄(i)t becomes an attention-weighted mean of the
samples,

x̄(i)t =
1

N(i)
t

t

∑
j=1

θ
(i)
t x(i)t (6)

Confidence

Value confidence is captured in the τ(i) term. More precisely,
τ(i) is the precision of samples for an item when it is attended.
Here, we refer to this parameter as “baseline precision” to
distinguish it from confidence ratings (which are only indi-
rectly related to precision, see below). In the first study, we
did not collect confidence measures, so we assume that all
items have the same baseline precision, a free parameter. In
the second study, we assume that baseline precision varies by
item, and that this variance is related to the rating confidence
judgements. For simplicity, we assume that an item’s baseline
precision is an affine function of its confidence rating,

τ
(i) = β0 +β1 · conf(i), (7)

where β0 and β1 are free parameters.
In the main model, we assume that both the samples them-

selves and the posterior estimate (given the samples) are con-
structed using a single τ(i) parameter, as in optimal Bayesian
inference. However, we also consider the possibility that the
posterior is formed assuming an incorrect precision, replac-
ing τ(i) with τ̃(i) in Equation 2. We consider two forms of
incorrect precision. In the “average confidence” model, the
agent treats all items as though they have the same sampling
precision:

τ̃
(i) = β0 +β1 ·mean(conf). (8)

In the over/under-confidence model, the agent assumes that
sampling precision is systematically higher or lower than it
really is:

τ̃ = β0 + γβ1 · conf, (9)

where γ > 1 corresponds to overconfidence and γ < 1 corre-
sponds to underconfidence.

Critically, in both of these models, the true noisiness of
the samples (Equation 3) remains unchanged. It is only the
posterior (Equation 2) that uses the biased τ̃(i) term.

Prior

Following Callaway et al. (2021), we assume that the prior
takes the form of a Gaussian distribution with a mean and
standard deviation related to the actual empirical distribution
of values as follows:

µprior = α ·mean(ratings)

λprior = std(ratings)−2.
(10)

Here, std(ratings) denotes the standard deviation of the value
ratings for all items used in the choice phase. The α parameter
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allows us to capture systematic biases in the prior, which may
result from incomplete adaptation to the experimental con-
text. In the full model, α is a free parameter. In the zero-prior
model, α is fixed to zero. Finally, in the flat-prior model, we
set λprior to 10−6, effectively removing all prior information.

Stopping rule

Intuitively, one should stop sampling (and make a decision)
when the cost of additional samples exceeds the expected in-
crease in decision quality from collecting those samples. Pre-
vious work has used dynamic programming to identify the
optimal stopping rule (Drugowitsch et al., 2012; Tajima et al.,
2016). However, the exogenous attention manipulation com-
plicates this approach, and the exact shape of the stopping
rule is not of critical interest for the current study. Thus, we
instead employ a simple approximation to the optimal stop-
ping rule. The approximation has two parts: First, rather than
predicting the specific sequence of future presentation dura-
tions, we assume that all future samples will be split between
the items according to the ratio of their average presentation
durations. Second, we estimate the value of additional sam-
pling using an adaptation of the Directed Cognition model
proposed by Gabaix & Laibson (2005). Concretely, we com-
pute the expected increase in decision quality (the value of
the chosen option) for different ammounts of additional sam-
pling, and substract the cost of that additional sampling. If
there is any amount of sampling for which this value is pos-
itive, the model continues sampling. See the Appendix for
further details.
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Stopping rule
As briefly described in the main text, we use a two-part ap-
proximation to the optimal stopping rule. Our method ap-
proximates the information content of future samples by as-
suming that both items will be presented in proportion to their
average presentation times; it then estimates the value of ad-
ditional sampling by hypothetically committing to different
amounts of sampling. We provide further details on each
component below.

Approximating future sample precisions A truly optimal
stopping policy would take into account the specific sequence
of future presentations, in particular, using the elapsed time
in the current presentation to predict the switch and there-
fore the precision of upcoming samples. Rather than model
this complex (and perhaps psychologically implausible) pro-
cess, we instead use the proportion of presentation time on
each item. That is, we use a mean-field approximation with
respect to time. Concretely, we approximate the attentional
downweighting for each item as

θ̄
(1) =

t̄1 + t̄2θ

t̄1 + t̄2
, (11)

where t̄1 and t̄2 are the means of the presentation duration
distributions for the two items (200ms and 500ms). θ̄(1) is
defined analogously.

Value of additional sampling Given these precisions, how
should one decide whether to make a decision or keep sam-
pling? We approximate the optimal stopping rule using
an adaptation of the Directed Cognition model proposed by
Gabaix & Laibson (2005). The intuition for the approxima-
tion comes in three steps.

First, we can quantify the value of information (VOI) for
taking one additional sample as the expected increase in the
utility of the item that would be chosen with additional infor-
mation vs. immediately:

VOIt(1) = E
[
uchoicet+1 −uchoicet

]
. (12)

We derive a closed-form expression for the VOI below.
Second, if the expected increase in decision quality for tak-

ing one more sample is greater than the sample cost, then
clearly one should take (at least) one more sample. That is,
one should take another sample if

VOIt(1)< c (13)

where c is the cost per sample, a free parameter of the model.
Third, note that VOIt(1) underestimates the true value of

sampling. This is because it assumes that one has to make a
decision after taking one additional sample when one could in
fact take more samples. In some cases, it may require multiple
samples to change one’s mind; in these cases, sampling once

has minimal value, while sampling several times could have
substantial value. To mitigate this problem, we can hypothet-
ically commit to taking N samples. If the VOI for N more
samples is greater than the cost of those samples (for any N),
then it would be better to commit to taking N more samples
than to make a decision now. However, actually committing
to taking every sample would be unwise, as the next sample
could make the correct decision obvious, rendering the fol-
lowing N− 1 superfluous. Thus, we recompute this value at
each time step, stopping as soon as

max
N

VOIt(N)< Nc (14)

Derivation of the VOI Finally, we derive a closed-form ex-
pression for Equation 12 for arbitrary N. First, note that

E [uchoicet ] = max
{

µ(1)t ,µ(2)t

}
(15)

because one chooses the item with higher expected value, µ(i)t ,
and the expected value of that item is simply µ(i)t . Thus we can
rewrite Equation 12 as

VOIt(1) = E
[
max

{
µ(1)t+1,µ

(2)
t+1

}]
−max

{
µ(1)t ,µ(2)t

}
. (16)

Here, µ(1)t+1 and µ(2)t+1 are random variables describing the pos-
terior means of each item after one more sample is collected.
µ(i)t+1 is normally distributed with mean µ(i)t and standard de-
viation

ζ
(i)
N =

Nτ̃(i)θ̄(i)(
λt +Nτ̃(i)θ̄(i)

)√ 1
λt

+
1

Nτ̃(i)θ̄(i)
. (17)

where the fraction captures the weight of the sample in the
posterior update and the square root term is the standard de-
viation of the sample given the current posterior mean, taking
into account uncertainty in the true value as well as the sam-
pling noise. Finally, using a standard formula for the expec-
tation of the maximum of two Gaussians (Nadarajah & Kotz,
2008), we have

E
[
max

{
µ(1)t+N ,µ

(2)
t+N

}]
= µ(1)t Φ(β)+µ(2)t Φ(−β)+φ(β)

(18)
where

β =
µ(1)−µ(2)√(

ζ
(1)
N

)2
+
(

ζ
(2)
N

)2
.

(19)
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