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Abstract
Research in psychology and artificial intelligence has sought to
ground information-seeking behavior in rational terms, typically as-
suming that people or agents prefer more informative data over less
informative data. While this seems reasonable on its surface, it as-
sumes that informativeness is only a property of the data, rather
than a joint property of the data and a (potentially bounded) learner.
That is, to the extent that it is hard to draw the right inferences
from data that are theoretically “high information,” the data will
not actually be highly informative to the learner. Here, we inves-
tigate active learning in humans using the code-breaking game Mas-
termind, which requires deductive reasoning from evidence. We
find that people make queries that are less informative than random
guesses, challenging standard rational or resource-rational accounts
of information-seeking. We then show that people make queries are
informative to them assuming they have a bounded capacity to draw
inferences. We also find that participants prefer queries that provide
easily-interpretable information over queries that provide more in-
formation but are less interpretable. Our results suggest that people
are aware of their own cognitive limitations and seek information
that they can use.

Introduction
People learn about the world through observation, experimen-
tation, and by asking questions. There is a tradition in Psy-
chology and Artificial Intelligence to understand hypothesis-
testing and question-asking in the framework of Optimal Ex-
perimental Design (OED) — performing experiments or ask-
ing questions that provide maximal information with respect
to a set of hypotheses (Horwich, 1982; Oaksford & Chater,
1994). Models based on Bayesian principles of experimental
design have had some success in explaining human behav-
ior, especially with respect to other possible modes of inquiry
such as falsificationism (Coenen et al., 2019; Popper, 1963).

For instance, Oaksford and Chater (1994)’s account of the
Wason Selection Task exemplifies the application of OED
principles in explaining a ubiquitous and seemingly irrational
aspect of human inquiry: a bias towards confirmatory rather
than dis-confirmatory evidence. In the Wason Selection Task,
participants are given four cards, each with a number on one
side and a letter on the other, and a rule of the form “if p, then
q.” For example, “if there is a vowel on one side (p), then
there is an even number on the other side (q).” The four cards
might show an A (p card), a K (not-p card), a 2 (q card) and
a 7 (not-q card). The logically valid choices are A (p ) and
7 (not-q), but people tend to pick A (p) and 2 (q). Oaksford
and Chater (1994) demonstrate using OED principles that this
type of confirmation bias is actually rational if people assume
that p and q are rare — if so, q is a more informative choice
than not-q.

However, recent work has shown that people select data
and ask questions that are significantly less informative than

an optimal agent (Coenen et al., 2019). For instance, Rothe
et al. (2016) ran an experiment involving a game similar to
Battleship, where participants saw partially-revealed boards
filled with rectangular tiles of varying lengths and colors, and
had to ask questions that had single-word answers to reveal
the hidden portion of the board. For instance, participants
might ask “is the red ship vertical?” They found that par-
ticipants’ questions were significantly less informative than
information-maximizing queries. Other work has demon-
strated that human inquiry tends to be myopic, in that people
tend to consider only one or a handful of hypotheses (Bram-
ley et al., 2017; Gregg & Simon, 1967; Klayman & Ha, 1989;
Markant et al., 2016); and they tend to pick questions in a
“greedy” fashion rather than choosing questions that are in-
formative with future questions in mind (Bramley et al., 2015;
Meder et al., 2019).

In this paper, we consider the hypothesis that limits on peo-
ple’s ability to represent and process information determines
how people actively learn about the world and what queries
they make. Specifically, constraints on learning may bias peo-
ple toward asking questions that have simpler answers than
would seem optimal from a globally information-maximizing
perspective — and yet, this may in fact be information-
maximizing when accounting for such constraints. We eval-
uate this hypothesis by testing active learning in humans in a
setting where questions return feedback of varying complex-
ity, namely the code-breaking game Mastermind, in which a
player attempts to guess a code comprised of colors or digits,
and receives feedback about how close each guess was to the
true code.

Figure 1: An example Mastermind game. The guesses are shown
on the left; feedback is given in the green and yellow squares. The
green square tells how many digits of the guess are in the code at
the correct position. The yellow square tells how many digits of the
guess are in the code but at the wrong position.913
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We first present a model of Mastermind to capture how an
agent with limited working memory might rationally play and
to help formalize a notion of processing complexity. Specifi-
cally, the model compresses the feedback received during a
game into semantic statements about which codes are still
possible given the queries and feedback in the game, such
as “codes containing the digit 1” or “codes with the digit 1
at the second or third position”. The model makes different
predictions about rational behavior depending on how long
these expressions are allowed to be: to the extent that these
statements are required to be short, information-maximizing
guesses (relative to the agent) will be those that will likely
provide highly compressible feedback; to the extent that these
expressions are allowed to be long, guesses will be truly
information-maximizing.

We then perform three experiments to test how humans
play, using this model to guide experimental design and anal-
ysis. In Experiment 1, we first simply have participants play
Mastermind and examine how informative their guesses are
overall. We find that participants’ guesses are remarkably un-
informative — less informative even than guesses sampled at
random. In Experiment 2, we use the model to partially solve
games optimized at different levels of processing complex-
ity. We find that participants have a much easier time solving
games — requiring both fewer guesses and less time — when
games are optimized to lower levels of processing complex-
ity. In Experiment 3, we use a forced-choice paradigm to test
whether participants actually prefer lower-complexity (and
lower-information) queries to higher-complexity (and higher-
information) queries. We find that participants initially show
little preference, but after playing several games strongly pre-
fer lower-complexity queries over information-maximizing
ones.

Mastermind
The goal of Mastermind is to guess a code consisting of four
colors or digits (here we use digits)1 by repeatedly making
queries and receiving feedback. Each time a player makes a
guess they receive two pieces of feedback: how many digits
of their guess are in the code at the correct position and how
many are in the code but in the wrong position. So, if a player
guesses 1233 but the true code is 1344, they will learn that
one digit of their code is in the code at the right position (in
this case the 1) and one digit is in the code but at the wrong
place (in this case the 3). They are not told which digits were
correct or partially correct — only how many of each.

While Mastermind is often called a “deductive” game and
is cognitively demanding to play, it can be solved perfectly
by a simple computer program without using any complex
reasoning. This is done by maintaining a list of all possi-
ble codes and ruling out codes that are incompatible with
previous guesses. Given the limitations of human memory,
however, it is unlikely that this is how any person solves the

1In the original game of Mastermind, there are six allowable dig-
its (or colors) in each of four slots. We only allowed four digits (1-4)
in the four slots here.

game. In order to account for people’s limited memory ca-
pacity, we modeled game-play in a “Language of Thought”
(LoT) that generates short semantic expressions to determine
which codes are ruled out (or still valid) after each guess.

Bounded LoT model
The LoT model generates λ expressions consisting of first-
order logic statements that take as input a potential code and
a potential guess and return a truth value, i.e. λ C,G → Bool.
The truth value indicates whether a code is still valid given
the guess. For instance, if the model guesses “2222” and
learns that one digit is correct, the only remaining codes are
those that have exactly one “2”, which can be expressed in
the model as: λ C,G → equals(count(C,2),1). The expan-
sion rules to generate valid expressions are essentially those
of a context free grammar, though with the addition of bound-
variables for quantifiers. The primitive operations we used
for generating expressions under the model are shown below.
While there is always some flexibility in choosing primitive
operations, we note that we selected these primitives with-
out reference to the data, using a fairly minimal set similar to
those used to model other tasks (e.g. Goodman et al., 2008;
Piantadosi et al., 2016).

Codes Values
Code → C Val →Code[Index]
Code → G

Indexes
Booleans Index → 1...L
Bool → equals(Code, Code)
Bool → equals(Val, Val) Numbers
Bool → equals(Num, Num) Num → 1...N
Bool → gt(Num, Num) Num → count(Code, Val)
Bool → and(Bool, Bool)
Bool → or(Bool, Bool) Quantifiers
Bool → xor(Bool, Bool) Quant →∃x ∈Code
Bool → not(Bool) Quant →∀x ∈Code
Bool → Quant(Bool)

We can use the model to measure the complexity of repre-
senting a certain piece of information — i.e., the description
length of an expression in the model2. In many cases, the
shortest expression to exactly represent the remaining valid
codes are quite long. Crucially, however, there are other ex-
pressions that are shorter and less precise that capture partial
information about which codes are still valid. Assuming that
there is a cost to representing long semantic expressions —
or that it is even impossible to do so beyond some limit —
the game is still solvable but will take longer. Figure 2 shows
how the model’s performance changes assuming it is only al-
lowed to represent information about which codes are valid
up to some bounded length. As the model is allowed longer
expressions, it rules out more codes more quickly (blue lines)

2What we call the “description length” in this paper is actually
the negative log probability of an expression, i.e. the number of bits
it takes to represent under the model.
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Figure 2: The number of codes remaining (y-axis) as a function of
the number of guesses made (x-axis) in the model, grouped by the
allowable description length. As the model is allowed greater ex-
pressivity (higher description-length bound), it makes more precise
deductions and rules out more codes.

and as it is allowed shorter expressions it rules them out much
less quickly (yellow lines).

As an illustrative example, consider the very first guess.
The information-maximizing first guess happens to be
“1123,” (or any equivalent code with two elements of one
kind and two singles) from which 88% of codes will be ruled
out afterward on average. The least informative first guess
is “1111,” from which only 67% of codes can be ruled out
after receiving feedback on average. However, the feedback
received from guessing “1123” is often complicated to pro-
cess, since multiple digits are involved. On the other hand,
“1111” will only ever give simple feedback, returning how
many 1’s are in the code. It turns out that the relative in-
formativity of the two guesses is swapped assuming a low
processing complexity bound. For a complexity bound of 6,
for instance, “1123” only rules out 14% of codes on average,
whereas “1111” rules out 44%.

Experiment 1
We first set out to simply test how informative participants’
queries are in the game Mastermind without any experi-
mental manipulation and relate them to a model that picks
maximally-informative queries. Based on previous studies of
human performance in Mastermind (Schulz et al., 2019), as
well as in other similar settings (Rothe et al., 2017), we ex-
pect that participants will pick queries that are not maximally
informative. To the extent that a standard bounded-rational
account of active learning might explain the data, however,
participants’ queries should be more informative than random
but less informative than optimal. If participants’ queries are
less informative than random, that would suggest that par-
ticipants may be using a strategy to avoid high-information
queries, perhaps because they also tend to be complex.

Method
We recruited 40 adult participants from the online platform
Prolific to play 10 rounds of the game Mastermind. Players

had up to 15 guesses total, otherwise they lost. They were
given a base pay of $2.50 with the possibility of earning a
maximum of $0.50 extra per game depending on their per-
formance: each additional guess they took lowered their total
bonus by 5 cents. If they ever guessed the correct code (even
after 10 guesses) they received an additional bonus of 5 cents.
All experiments were created using the PsiTurk framework
(Gureckis et al., 2016).

Results
We removed participants who solved fewer than 5 games
(n = 9), leaving 31 participants. The remaining participant
pool eventually guessed the correct code in 83% of the games
overall, so 17% of the time the game ended after 15 guesses
without them guessing the correct code. In the games where
participants eventually guessed the correct code, they took 7.6
guesses on average (SD = 3.4). This performance is remark-
ably poor compared with an optimal model, which takes on
average 3.8 guesses and at most 5 for any given game.

An interesting question is whether participants were mak-
ing uninformative queries, and thus taking a long time to
narrow down the space of possible codes; or whether they
were simply ignoring or not fully processing the information
available to them. These are, of course, not mutually exclu-
sive possibilities. If participants were fully processing the
available information but asking uninformative questions, we
should expect that once the code was fully determined by the
queries and feedback — meaning, the game could be solved
by a perfect-reasoning agent at that point — they should get
the correct answer on the next turn. Of the 7.6 guesses it
took participants to solve a game on average (provided that
they ever solved it), it took them 4.5 guesses before the code
was perfectly determined and 3.1 guesses after the code was
perfectly determined to guess the correct answer. So, partici-
pants took on average 2.1 extra guesses on average once they
had determined the true code. This implies that participants
were likely both making uninformative queries and not fully
processing all of the available information. The inefficiency
remained even after removing redundant guesses, which only
slightly lowered the mean guesses required to solve a game
to 7.4.

To better address this question, we can compare the perfor-
mance of two Mastermind-playing models against humans:
an agent that picks a query to rule out as many codes as pos-
sible; and an agent that picks a random query until the code
is perfectly determined, and then picks the correct code. Fig-
ure 3a shows the cumulative probability of having won the
game (y-axis) as a function of the number of guesses made
(x-axis) for people and both models. People are worse not
only than the optimal model, but also significantly worse than
the random model, which takes 4.9 guesses on average, or
2.5 fewer than participants did. More striking, however, is
Figure 3b, which shows how many codes are remaining (y-
axis) as a function of the number of guesses made (x-axis).
This illustrates that participants’ queries are less informative
even than random queries, since they rule out fewer codes af-
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Figure 3: Results from Experiment 1. (a) The cumulative probability of guessing the correct code (y-axis) as a function of the number of
guesses attempted (x-axis) for an information-maximizing agent (red), randomly-guessing agent (blue) and humans (black). (b) The number
of codes remaining (y-axis) as a function of the number of guesses attempted (x-axis) for an information-maximizing agent (red), randomly-
guessing agent (blue) and humans (black). (c) A histogram of the difference between the expected information gain of humans’ queries versus
random queries across all guesses where there was at least some information to gain.

ter each guess than a purely random query would. Figure 3c
shows the expected information gain of participants’ queries
against purely random queries when there are at least some
codes remaining. The EIG of participants’ queries and ran-
dom queries differed significantly from 0 (µ = −0.25 bits,
t1,1397 =−14.7, p < 0.001).

Participants’ inefficiency was not merely about being for-
getful or repeating themselves, as their queries were signifi-
cantly less informative than random queries on each of their
first four choices; separate t-tests revealed significant differ-
ences at each point (ts < −3, ps < 0.01). There was, how-
ever, an effect of time such that when participants spent more
time thinking about their guess, the difference between the
expected information gain of queries and a random query nar-
rowed. As illustrated in Figure 4, however, even when partic-
ipants spent a significant amount of time thinking (over 30
seconds), their queries never became more informative than
random on average.
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Figure 4: Data from experiment 1. The expected information gain
of participants’ queries relative to a random query as a function of
the amount of time they spent before guessing.

Experiment 2
Experiment 1 demonstrates that people make uninformative
queries in Mastermind. However, this does not mean that

they would necessarily benefit from more informative data.
If people have a bounded capacity for reasoning — and are
unable to make all the available deductions when they are
complex — then the most informative guesses may lead to
feedback that is difficult to reason about. We can test this by
partially solving games for participants where queries have
been chosen either to be maximally informative or to be less
informative but more interpretable. Our prediction is that par-
ticipants will struggle to finish games that have been solved
with the maximum-EIG guesses relative to games with less
informative but lower-complexity guesses.

Method
We used the bounded-LoT model to play games of 4-digit, 4-
slot Mastermind in one of two ways: either picking the max-
EIG guess subject to a relatively low description length bound
(length 9) or picking the max-EIG guess overall. Participants
were then presented with partially-solved games from either
one of these two conditions, with anywhere between 1 and
8 guesses already made by the model (along with feedback).
Participants’ job was to finish the game from where the model
left off. We recruited 35 participants from the online platform
Prolific, each of whom played 10 games, five of which came
from the bounded-DL model and five of which came from the
max-EIG model. Participants were paid $2.50.

Results
We removed participants who solved fewer than half of the
games (n = 5), leaving 30 participants. In games that were
partially solved using the max-EIG policy, there were fewer
codes remaining than in games that were partially solved us-
ing the bounded-DL model (13.8 codes versus 26.5 codes
on average). If processing complexity did not matter, then,
we would expect participants to finish the game faster in
the games that were partially solved using the max-EIG pol-
icy. However, as Figure 5a shows, the opposite is true: the
number of guesses required to solve the game in the lower-
complexity, lower-information games was less (µ = 4.3, σ =
3.9) than in the max-EIG games (µ = 6.7, σ = 4.7). We ran
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a regression predicting the number of guesses it took to solve
the game from the number of codes remaining at the begin-
ning and the policy type, with random subject intercepts and
slopes. We found a significant effect of the number of ini-
tial codes remaining (Bstart = 0.04; t2,298 = 3.35; p < 0.001);
however, this effect was dominated by the policy type: games
partially solved with the max-EIG policy required several
more guesses to finish than games solved with the low-
complexity policy (Bmax = 3.35; t2,298 = 4.88; p < 0.001).
Not only did participants require fewer guesses before reach-
ing the correct solution in the low-complexity condition, but
they were quicker as well, finishing 35 seconds faster on av-
erage (85s vs 120s).
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Figure 5: Results from Experiment 2. The number of guesses taken
to find a solution in the low-complexity and max-EIG conditions.
Participants took more queries on average to finish games that were
partially solved using the max-EIG queries.

Experiment 3
Experiment 2 shows that people struggle to process
information-maximizing guesses in Mastermind, and are able
to make much more effective use of guesses that provide feed-
back that is easy to interpret. However, it is still not clear that
people are deliberately choosing less informative but lower-
complexity guesses when they play Mastermind. That is,
we have not demonstrated that people are using a “bounded-
rational” strategy in any sense, just that they struggle to pro-
cess certain information and do not pick high-information
queries. In Experiment 3, we use a forced-choice paradigm
to evaluate whether people will choose low-information, low-
complexity guesses over high-information, high-complexity
guesses — and also, if so, whether this is to their benefit.

Method
In this experiment, participants played a modified version of
Mastermind with two phases. In phase one, participants were
repeatedly given two codes to select between as a guess. This
portion of the game continued until the true code was per-
fectly determined, after which phase two began. In phase two,
participants tried to guess the code (no longer as a forced-
choice) but without any feedback. The codes in the forced-
choice portion (phase one) were designed such that one

was maximally-informative and the other was maximally-
informative subject to a bounded description length (length
9). Additionally, the codes presented as options to the par-
ticipant in phase one were never the true code. We recruited
38 participants from Prolific, each of whom played 10 games.
Participants were paid $2.50.

Results
Our main question of interest here is how participants be-
haved in the forced-choice portion of the game — specifi-
cally, whether participants chose the guess that maximized
expected information gain or whether they chose the lower-
complexity guess that maximized information gain at a
bounded description length. Figure 6a shows the probability
that participants chose the low-complexity guess as a function
of trial (how many games they had played). Participants were
initially near chance in picking between the two options, but
came to have a strong preference for the lower-complexity
guess as they had played more games. We ran a logistic re-
gression with random subject effects to predict the probability
that participants chose the low-complexity guess as a function
of the trial3, and found that the intercept was positive but not
significantly different than 0 (B0 = 0.19; z= 1.05; p= 0.29);
however, there was a significant effect of trial number (Bt =
0.09; z = 3.86; p < 0.001). This regression thus predicts
that participants start out picking the low-complexity option
about 55% of the time but are picking the low-complexity op-
tion about 74% of the time by the final game. This is notable
because it implies that participants are learning a strategy for
picking lower-complexity codes.

We next looked at how participants’ behavior in the forced-
choice portion of the task predicted their ability to determine
the true code in the second phase of the task, which was free
response and without feedback. Figure 6b shows the prob-
ability that participants eventually solved the game (within
an allotted 10 guesses) given how often they had picked a
low complexity guess in the forced-choice portion of the task.
There is a striking relationship, with picking low-complexity
guesses in the forced-choice phase strongly predicting even-
tually finding a solution. In a logistic regression with ran-
dom subject effects predicting solving the game from the
proportion of low-complexity guesses, the intercept signifi-
cantly differed from 0 (B0 = −0.78; z = −2.34; p = 0.02),
as did the proportion of low-complexity guesses (Blow =
1.74; z= 4.01; p< 0.001). This indicates that on trials where
only the max-EIG option was picked, participants solved the
game only about 31% of the time; but when only the low-
complexity option was chosen, participants solved the game
nearly 72% of the time. Similarly, as Figure 6c shows, on
trials where participants picked the low-complexity more fre-
quently, they also required fewer guesses to get the right an-
swer in phase two. A linear regression with subject parame-
ters found a significant intercept (B0 = 8.03; t = 15.0; p <

3For ease of interpretation, trial 1 was set to trial 0. So the in-
tercept represents how often participants picked the low complexity
option on the first game.
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Figure 6: Results from Experiment 3. (a) The probability that participants picked the low-complexity code (y-axis) in the forced-choice
portion of each game across trials (x-axis). (b) The probability that participants eventually solved a game (within 10 guesses) in phase two
(y-axis) given the proportion of low-complexity guesses they made in phase one (x-axis). (c) The number of guesses participants required to
solve the game in phase two (y-axis) given the proportion of low-complexity guesses they made in phase one (x-axis), non-solvers excluded.

0.001) and a significant effect of picking the low-complexity
choice (Blow =−2.65; t =−3.07; p< 0.001), indicating that
participants required more guesses to get the correct answer
when they did not pick the low-complexity option frequently
in the forced choice phase. This effect remained even remov-
ing trials where participants eventually solved the task.

Discussion
In this paper, we asked how human active learning is shaped
by processing demands, which we tested using the game Mas-
termind. Across our three experiments, we demonstrated:
1) that people make queries that are far from maximally-
informative; 2) that they in fact cannot use informative
queries effectively because they are too complex to reason
about; and 3) that when given the choice, they actually prefer
lower-complexity, lower-information queries. These findings
challenge simple Optimal Experimental Design theories of
active learning that do not account for costs and limitations
associated with learning, and instead support a more nuanced
story (cf. Gong et al., 2023): that people are cognitively lim-
ited in what data they can process effectively; they know this
(or can learn their limits quickly); and they make queries with
their limited capacity for processing information in mind.

Previous research on human active learning has used a
modified version of Mastermind, called “Entropy Master-
mind,” in which the distribution over digits/colors in a code
is allowed to be non-uniform (Schulz et al., 2019). In that
work, they found that people required fewer queries, were
faster to generate queries, and had faster learning rates if the
entropy of the generating distribution was lower. They also
found that participants adapted to the generating distribution
across trials. However, it is evident from their results that par-
ticipants’ queries were inefficient in absolute terms, but the
authors’ primary interest was in directional effects relating to
the entropy over codes — and the authors’ analyses did not
address this issue. The work we present here complements
these results by explaining how people might efficiently seek
maximal information under a limited processing capacity, and

hence might seem inefficient in absolute terms.

The LoT-based approach we took shares similarities with
the “mental models” theory of reasoning developed by Philip
Johnson-Laird and others, which has been used to capture the
incorrect inferences people draw from sets of logical postu-
lates (e.g. Craik, 1967; Johnson-Laird et al., 1998, 2004).
The mental models approach assumes that participants reduce
propositions into sets of independent possibilities about what
might be true. This theory has been used to explain a number
of fallacies and “illusions” people make when evaluating sets
of logical assertions, e.g. with the form “if A then B or else
C.” In one study, they found that as the number of possibili-
ties compatible with the assertions increases, the difficulty of
the task increases, and that reasoners represent what is true
according to assertions, but do not keep track of what is false
(Johnson-Laird et al., 2000) — consistent with their theory
(and with ours). The LoT framework we employed here ex-
tends the mental models approach to a potentially unbounded
space of representations, such that it allows for perfect rea-
soning in the limit of expressivity (i.e. when unboundedly
long descriptions are allowed) but also for constrained rea-
soning when expressivity is restricted.

There are two limitations worth noting. First, as with all
such “Language of Thought” based modeling approaches, the
particular choice of primitive operations in the model allows
for a significant degree of flexibility. We attempted to miti-
gate this issue by choosing a fairly agnostic set of primitives
that have been used to model similar tasks (Goodman et al.,
2008; Piantadosi et al., 2016), and by not fitting production
weights for the primitives to data. Second, our model does not
address at an algorithmic level how people actually choose
codes — we have only shown that people find certain infor-
mation difficult to process, and that they prefer information
that has low expected complexity under our model. How peo-
ple compute the expected complexity of a query, or whether
they actually make this computation at all, remains unclear.
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