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People’s decisions often deviate from classical notions of rationality, incurring costs to them-
selves and society. One way to reduce the costs of poor decisions is to redesign the decision
problems people face to encourage better choices. While often subtle, these nudges can have
dramatic effects on behavior and are increasingly popular in public policy, healthcare, and
marketing. Although nudges are often designed with psychological theories in mind, they are
typically not formalized in computational terms and their effects can be hard to predict. As a
result, designing nudges can be difficult and time-consuming. To address this challenge, we
propose a computational framework for understanding and predicting the effects of nudges.
Our approach builds on recent work modeling human decision-making as adaptive use of
limited cognitive resources, an approach called resource-rational analysis. In our framework,
nudges change the meta-level problem the agent faces—that is, the problem of how to make
a decision. This changes the optimal sequence of cognitive operations an agent should exe-
cute, which in turn influences their behavior. We show that models based on this framework
can account for known effects of nudges based on default options, suggested alternatives, and
information highlighting. In each case, we validate the model’s predictions in an experimental
process-tracing paradigm. We then show how the framework can be used to automatically
construct optimal nudges, and demonstrate that these nudges improve people’s decisions more
than intuitive heuristic approaches. Overall, our results show that resource-rational analysis is
a promising framework for formally characterizing and constructing nudges.
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How do people choose when to recycle, how much to save,
or what to buy for lunch? When facing decisions both large
and small, people’s choices are often at odds with classical
notions of rationality. These deviations are not only theoret-
ically important, but can also incur large costs for both indi-
viduals and societies (Kahneman, Slovic, & Tversky, 1982).
For example, a majority of Americans report undersaving for
retirement (Choi et al., 2006), which may be partly due to
people’s inconsistent time preferences, tendency to neglect
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compounding, and bias towards procrastination (Goda, Levy,
Manchester, Sojourner, & Tasoff, 2015; Thaler & Benartzi,
2004).

In an effort to reduce these costs, researchers have pro-
posed using theoretical and empirical results from psychol-
ogy to redesign the choice architecture, or way that decisions
are structured and framed, to help people make better choices
(Thaler & Sunstein, 2008). For example, retirement savings
can be increased by having employees opt out of automatic
contributions, rather than opting in (Madrian & Shea, 2001).
These nudges are an increasingly popular complement to tra-
ditional interventions such as educational programs, legisla-
tion, and tax incentives, and are often significantly less ex-
pensive to administer (Benartzi et al., 2017).

While promising, there is no widely accepted formal
framework for modeling the effects of different choice ar-
chitectures on behavior. This introduces three substantial
challenges for nudge theory. First, models of nudges are
often domain-specific and ad hoc (Chetty, 2015; Hausman &
Welch, 2010; Kosters & Van der Heijden, 2015; Willis, 2013;
Yeung, 2012). This makes it difficult to make robust pre-
dictions in new settings (Kosters & Van der Heijden, 2015;
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Moseley & Stoker, 2013; Yeung, 2012). Second, there is
often disagreement about what behaviors nudges should aim
to promote (Goodwin, 2012; Tannenbaum, Fox, & Rogers,
2017). When choice architects and decision makers have dif-
ferent goals, nudges could be seen as manipulative or even
exploitative (Hausman & Welch, 2010; Wilkinson, 2013).
Identifying appropriate goals for nudges is especially chal-
lenging in populations with heterogeneous preferences and
needs (Carroll, Choi, Laibson, Madrian, & Metrick, 2009;
Mills, 2020). Third, developing new nudges often involves
an iterative process of search and experimentation (Moseley
& Stoker, 2013; Vlaev, King, Dolan, & Darzi, 2016). This
process is slow and expensive, and it constrains nudges to
choice architectures that researchers find intuitive.

In this paper, we propose a new framework for modeling
nudges and predicting their effects. Our approach builds on
resource-rational analysis, an approach to deriving models of
human behavior by assuming that people make optimal use
of their limited computational resources (Griffiths, Lieder, &
Goodman, 2015; Lieder & Griffiths, 2020; see also Gersh-
man, Horvitz, & Tenenbaum, 2015; Howes, Lewis, & Vera,
2009; Lewis, Howes, & Singh, 2014; Sims, 2003). While
classical rational models assume that people are rational with
respect to their choices, resource-rational models assume that
people are rational with respect to how much they think and
what they think about. This idea itself builds on bounded ra-
tionality (Simon, 1955, 1990), which suggests that people’s
rationality is limited by cognitive constraints. Resource-
rational analysis (and the related approaches cited above) ex-
tend this idea by providing a mathematical characterization
of how an optimal agent should navigate those constraints.
This allows us to make quantitative predictions about what a
person will think about when making a decision.

In our framework, a nudge changes the accessibility of dif-
ferent pieces of information or modifies the decision maker’s
beliefs. This changes the decision maker’s belief when
making a choice, which in turn influences the choice itself.
The framework can help address the three challenges fac-
ing choice architects described above. First and foremost, it
provides a way to build mathematically explicit models of
how the choice architecture will influence people’s decision-
making—and ultimately, their decision. This not only makes
it possible to provide rigorous formal explanations for the
effects of nudges, but also to predict how those effects will
change under new decision contexts or variations of the
nudge. Second, by evaluating nudges based on their effects
both on people’s decisions and deliberation, our framework
provides a new way to conceptualize and quantify the goals
of nudges. Finally, building on the first two contributions,
our framework can be extended to automatically construct
optimal nudges, in which we use optimization algorithms
to identify the choice architecture that best satisfies a given
goal.

The paper is organized as follows. We first provide a
brief review of nudging and resource-rational analysis and
present our formal framework for modeling nudging. We
then introduce a simplified experimental paradigm for test-
ing our predictions. We apply our approach to three pop-
ular nudges—default options, suggestions, and information
highlighting. For each nudge, we first use resource-rational
analysis to model its effects, and then test predictions from
our model in a behavioral experiment. After providing a for-
mal account of these nudges, we show how our framework
can be used to automatically construct optimal information
highlighting nudges. We test our approach to optimal infor-
mation highlighting in two experiments, comparing nudges
determined by our procedure with those constructed by a
heuristic and those constructed randomly. We conclude by
discussing the implications of our findings and approach to
nudge theory, ways in which our framework could be im-
proved, and promising areas for future research.

Nudging

Nudging is an approach to improving people’s choices by
changing the way decisions are framed and presented (Sun-
stein, 2019; Thaler & Sunstein, 2008). Nudges use find-
ings from psychology and behavioral economics to change
the structure of a decision without restricting people’s free-
dom of choice or changing their economic incentives. While
often simple, nudges have been effective in a diverse set
of domains, including education (Damgaard & Nielsen,
2018), finance (Cai, 2020), healthcare (Voyer, 2015), en-
ergy consumption (Lehner, Mont, & Heiskanen, 2016), and
tax compliance (Antinyan & Asatryan, 2019), among others
(Mertens, Herberz, Hahnel, & Brosch, 2022; Sunstein, 2016;
Szaszi, Palinkas, Palfi, Szollosi, & Aczel, 2018).

Most research on nudging has been guided by research
on heuristics and biases (Kahneman et al., 1982). In this
paradigm, researchers design choice architectures that ei-
ther attempt to mitigate the effect of a bias or instead lever-
age the bias to guide behavior. Consider, for example, the
widely studied tendency for people to procrastinate perform-
ing important tasks (Steel, 2007). The effects of this bias can
be reduced by giving people tighter deadlines (O’Donoghue
& Rabin, 1998); for example, individuals redeem more gift
certificates when they expire more quickly (Shu & Gneezy,
2010). On the other hand, people’s bias towards procrasti-
nation can be used as a tool for improving choice. For ex-
ample, Thaler and Benartzi (2004) show that allowing em-
ployees to commit to saving a proportion of future salary
increases can improve savings rates. As we review further
below, researchers have cataloged many examples of effec-
tive nudges, and provided plausible cognitive mechanisms
underlying their effects. However, these explanations have
typically not been formalized mathematically, and they are
often highly specific to each individual case.
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A more recent line of work has thus focused on develop-
ing formal models that capture of a wide range of nudges
(Lin, Osman, & Ashcroft, 2017). These models typically
abstract away from the specific psychological mechanisms
involved, and instead characterize nudges using the formal
tools of economics. To account for the effect of nudges,
which by definition do not substantially change economic
incentives, these models employ a distinction between a
decision maker’s decision utility (the objective they maxi-
mize when making a decision), and their experienced util-
ity (the well-being they derive from their choice; Kahneman,
Wakker, & Sarin, 1997). Specifically, nudges are modeled
as changes to the decision utility or the perceived cost of
a good. These models of nudges have allowed economists
to incorporate nudging into analyses of welfare and taxation
(Allcott & Kessler, 2019; Carlsson & Johansson-Stenman,
2019; Chetty, 2015; Farhi & Gabaix, 2020). In a recent ex-
tension of this approach, Lofgren and Nordblom (2020) con-
sider how properties of a decision determine when people
make heuristic (and therefore, nudgeable) choices. However,
because these models abstract away from specific choice ar-
chitectures (summarizing them as simple scalar utility off-
sets), they are unable to make specific predictions about how
different nudges will affect people’s decisions.

Thus, one line of work has produced intuitive, mechanistic
accounts of individual nudges, while another has produced
formal, abstract accounts of nudging as a whole. Recently,
Zhao, Coady, and Bhatia (2022) addressed this gap by char-
acterizing the effects of different nudges using drift diffusion
models (DDMs; also see Felsen and Reiner (2015)). By fit-
ting the model to human decisions when given different types
of nudges, they were able to describe the effect of the nudge
in terms of the parameters that govern the rate at which evi-
dence accumulates in favor of one option, the initial bias to-
wards each option, and the total amount of evidence needed
to make a decision. Their framework thus describes how
a nudge influences the decision-making process, and offers
a principled approach for choosing between different inter-
ventions in different contexts. However, this approach has
not yet been used to predict how a given nudge would affect
these parameters. Thus, it is not clear how it could support
designing new nudges.

In this paper, we build on this work and propose a for-
mal framework that can make predictions about the effects of
specific choice architectures. We demonstrate the approach
using three commonly-used nudges as case studies: default
options, suggestions, and information highlighting. We now
describe each type of nudge in detail and briefly review find-
ings on their impact on choice.

Default options

Perhaps the best known and most successful type of nudge
involves reconfiguring or introducing default options. De-

fault options are those that the decision maker (hereafter, the
agent) will select if they do not act. That is, default options
are chosen when no decision is made, and thus define the sta-
tus quo. For example, in the United States people must sign
up to be organ donors. In other countries, however, the de-
fault is switched: people are considered organ donors unless
they request not to be.

While subtle, defaults can have substantial effects on peo-
ple’s choices in both field (Bergeron, Doyon, Saulais, &
Labrecque, 2019; Momsen & Stoerk, 2014) and laboratory
(Huh, Vosgerau, & Morewedge, 2014) settings. For exam-
ple, organ donation rates in countries with opt-out programs
have significantly higher donation rates than countries with
opt-in programs (Abadie & Gay, 2006; Johnson & Goldstein,
2004). Similarly, defaults have been shown to have large ef-
fects on a wide range of decisions, such as investment and
saving (Madrian & Shea, 2001), insurance selection (John-
son, Hershey, Meszaros, & Kunreuther, 1993), and charitable
donations (Goswami & Urminsky, 2016).

Despite their widespread use and overall success, defaults
are not always effective (Sunstein, 2017). A recent meta-
analysis found several studies in which default options had
no significant effect on choice, and there was considerable
variation in the effect size among those with significant ef-
fects (Jachimowicz, Duncan, Weber, & Johnson, 2019). Ex-
plaining why defaults work when they do—and better yet,
predicting new contexts in which they will be effective—is
thus an important goal in nudging research.

Several explanations for the influence of defaults have
been offered. First, making a choice is costly—an agent
may decide that evaluating possible alternatives is simply
not worth their effort when a default is offered (Johnson &
Goldstein, 2003; Johnson et al., 2012). This is supported by
research showing that placing people under cognitive load
(Huh et al., 2014) or time pressure (White, Jiang, & Albar-
racin, 2021) increases the chance that they stick with the de-
fault. Second, the agent may interpret the default as an im-
plicit recommendation or endorsement from the choice ar-
chitect or policy maker (Gigerenzer, 2008; Johnson & Gold-
stein, 2003; McKenzie, Liersch, & Finkelstein, 2006). This
may cause defaults to be less effective in domains where peo-
ple have expertise (Brown, Farrell, & Weisbenner, 2012; Lof-
gren, Martinsson, Hennlock, & Sterner, 2012) or perceive the
choice architect as having interests differing from their own
(Tannenbaum et al., 2017). Third, if the default option is
used as a reference point, loss aversion may bias the agent
towards the status quo, or to sticking with the default (Din-
ner, Johnson, Goldstein, & Liu, 2011; Fryer Jr, Levitt, List,
& Sadoff, 2012). Indeed, each of these effects may influence
different people on the same decision problem (Brown et al.,
2012).
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Suggested alternatives

In many domains, people are offered a suggestion before
or after making a choice. For example, digital recommender
systems allow consumers to identify options they may not
have considered on their own (Schafer, Konstan, & Riedl,
1999), and salespeople often “upsell”, suggesting lucrative
alternatives or additions after a customer’s initial choice. Re-
search has shown that when used for the consumer’s benefit,
suggestions can be effective instruments for improving peo-
ple’s choices (van Kleef, van den Broek, & van Trijp, 2015).
For example, in a twist on the well-known “supersizing” up-
sell, Schwartz, Riis, Elbel, and Ariely (2012) showed that
up to 33% of customers at a fast food restaurant accepted an
offer to downsize a side order, significantly reducing their
calorie consumption. Similarly, suggesting nutritious side
dishes can increase healthy purchases (Vercellis, 2009), and
offering restaurant customers the opportunity to “wrap” their
leftovers after a meal may reduce food waste (Hamerman,
Rudell, & Martins, 2018). The effectiveness of suggested
alternatives is not limited to food choice—Forget, Chiasson,
Van Oorschot, and Biddle (2008) show that providing more
secure alternatives to user-generated passwords can signifi-
cantly improve password security.

Suggestions can also be given before an initial choice, an
especially common approach in digital recommendation sys-
tems (Jesse & Jannach, 2021; Xiao & Benbasat, 2007). In-
deed, suggestions given early in the deliberation process may
be especially effective in impacting choice (Forwood, Ahern,
Marteau, & Jebb, 2015). For example, Bothos, Apostolou,
and Mentzas (2015) show that a recommender system can
help commuters identify alternative eco-friendly routes they
would not have considered on their own.

While often successful, it remains unclear why and how
upsells and other suggestions influence people’s choices.
Suggestions may break the automatic behavior, or “script,”
of certain situations, allowing people to exert more self-
control and make better choices than they otherwise would
(Schwartz et al., 2012). In other domains, external sugges-
tions may allow people to justify norm-violating choices or
behaviors (Hamerman et al., 2018). Lastly, because sugges-
tions are often accompanied by novel information highlight-
ing their attractiveness (Heidig, Wentzel, Tomczak, Wiecek,
& Faltl, 2017), people may tend to systematically overesti-
mate their quality.

Information highlighting

Default options and suggestions influence people’s
choices by making certain choices easier than others or pro-
viding additional information about certain options. Infor-
mation highlighting nudges, by contrast, influence people’s
behavior by modifying the presentation of choice-relevant
information. By making certain information more or less

salient, information highlighting nudges take advantage of
the limited attention, effort, and time people have to make
their decision, and often influence people’s choices without
their knowledge.

While common in many domains, information highlight-
ing is especially popular in designing “foodscapes”—the
physical and digital environments where people purchase
or consume food—to help people make healthier choices
(Bucher et al., 2016; Elsweiler, Trattner, & Harvey, 2017;
Starke, Klgvergd Brynestad, Hauge, & Lgkeland, 2021; Wil-
son, Buckley, Buckley, & Bogomolova, 2016). One pop-
ular approach to promoting healthier eating choices is to
manipulate the labeling of nutritional information on food
packaging. However, consumers often attend to just one or
two product features when deciding what to buy (Kalnikaite,
Bird, & Rogers, 2013), and so the effects of labeling de-
pend critically on how information is displayed, not just
what information is available (Liu, Wisdom, Roberto, Liu,
& Ubel, 2014). Indeed, simply providing additional infor-
mation about each option (such as the number of calories
it contains) often has little, if any, effect on choice (Kiszko,
Martinez, Abrams, & Elbel, 2014; Loewenstein, Asch, Fried-
man, Melichar, & Volpp, 2012; Sinclair, Cooper, & Mans-
field, 2014) as many consumers simply ignore the informa-
tion (Krukowski, Harvey-Berino, Kolodinsky, Narsana, &
DeSisto, 2006). Instead, effective information highlighting
typically involves summarizing a limited number of features
with simple visual cues (Lin et al., 2017). These effects,
of course, have long been exploited in marketing contexts,
where product design, packaging, and labeling is manipu-
lated to increase sales (Deliza & MacFie, 2001).

For example, Ecuador recently introduced mandatory
“traffic light” labeling of food items’ fat, sugar, and salt con-
tent. In these labels, the concentration of each nutrient is
listed at one of four levels, with each level represented by a
unique color—none (white), low (green), medium (orange),
and high (red). Research has found that these labels have im-
proved healthy eating behavior in Ecuador (Sandoval, Car-
pio, & Sanchez-Plata, 2019), mirroring findings on the ef-
fects of similar labels in restaurants and cafeterias in other
countries (Ellison, Lusk, & Davis, 2014; Sonnenberg et al.,
2013; Thorndike, Riis, Sonnenberg, & Levy, 2014). How-
ever, the impact of traffic light labeling appears to be highly
dependent on individual characteristics such as age (Freire,
Waters, & Rivas-Marifio, 2017), health attitudes (Freire, Wa-
ters, Rivas-Marifio, Nguyen, & Rivas, 2017), and socioeco-
nomic status (Orozco, Ochoa, Muquinche, Padro, & Melby,
2017; Sandoval et al., 2019).

Summary

Nudges are changes to the structure or framing of a deci-
sion that do not restrict people’s freedom of choice or change
their economic incentives. While nudging is a promising tool
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for improving choice and reducing bias, there is no unifying
theoretical framework for modeling the effects of different
choice architectures on deliberation and behavior (Buckley,
2009; Yeung, 2012). In this paper, we argue that resource-
rational analysis is a promising framework for doing so.

Resource-rational analysis

Resource-rational analysis is a formal framework for de-
riving cognitive models based on the assumption that people
make optimal use of their limited cognitive resources. In this
approach, a cognitive process is understood as the solution
to an optimization problem, where the objective function ex-
plicitly trades off external utility (e.g., the pleasure of eating
a delicious meal) with internal computational cost (e.g., the
time spent deciding where to eat). Resource-rational anal-
ysis thus builds on the old idea that adaptive behavior is
shaped by the “inner environment” of one’s mind as well as
the external environment of the outside world (Simon, 1955,
2000). Resource-rational models formalize this internal en-
vironment as an abstract computational architecture defined
by a set of abstract information processing operations rele-
vant to a given problem, together with their costs and effects
(Griffiths et al., 2015; c.f., Chase, 1978; Simon, 1979). By
further assuming that our cognitive processes make optimal
use of these computational architectures, resource-rational
models can make quantitative predictions about how people’s
behavior will change as we make small adjustments to their
external environment (i.e., nudges).

Object-level and meta-level problems

To formalize nudging in a resource-rational framework,
we draw on a key distinction between object-level prob-
lems and meta-level problems (Russell, 2016; c.f. Nelson
& Narens, 1990).! In general, an object-level problem is
the first-order problem one needs to solve, while a meta-
level problem is the second-order problem of how one should
go about solving the first-order problem. For example, one
object-level problem people often face is picking a place
to eat dinner. It could be defined by the set of possible
restaurants and the utility associated with eating at each of
them. The corresponding meta-level problem is how to de-
cide where to eat dinner. One way it could be defined is by
the set of mental strategies one can use to make the deci-
sion (e.g., choosing the cheapest restaurant or attempting to
balance price and quality) together with the costs of execut-
ing each strategy and the expected utility of the choices they
would produce (Lieder & Griffiths, 2017).

Put in these terms, the key difference between classical
rational models and resource-rational models is that the for-
mer are based on optimal solutions to object-level prob-
lems whereas the latter are based on optimal solutions to
meta-level problems. That is, while a classical rational
model would assume that people pick the best restaurants,

a resource-rational model would assume that people use the
best strategy for deciding where to eat: the strategy that
strikes the optimal tradeoff between the utility of the cho-
sen restaurant and the cost of the strategy used to select that
restaurant. As mentioned above, these constraints are for-
malized by an abstract computational architecture that de-
fines the set of information processing operations with their
costs and effects. Thus, in a resource-rational model, the
meta-level problem is defined by an object-level problem to-
gether with the computational architecture the brain must use
to solve the problem. The optimal solution to that meta-
level problem corresponds to a resource-rational cognitive
process.

Thinking as a sequential decision problem

How can we formally characterize the meta-level problem
defined by a given decision problem and computational ar-
chitecture? A key insight from the field of rational metar-
easoning is that meta-level problems can be modeled in the
same way as certain object-level problems, specifically se-
quential decision problems (Russell & Wefald, 1991). A se-
quential decision problem is a problem that requires making
a sequence of interdependent decisions; navigation and chess
are classic examples. Typical (object-level) sequential deci-
sion problems are defined by a set of states the world can
be in and actions the agent can take to change that state. In
contrast, a meta-level sequential decision problem is defined
by a set of mental states (or “beliefs”) an agent can have and
cognitive operations (or “computations”) that the agent can
execute to update their mental state. Below, we formalize this
idea, showing how meta-level problems can be modeled as
a meta-level Markov decision processes (meta-level MDPs;
Hay, Russell, Tolpin, & Shimony, 2012).

Continuing with the restaurant example, at each moment
we can only consider one (or perhaps a few) restaurants, eval-
uating or comparing them on one dimension at a time. Which
restaurants and dimensions we consider now will influence
what we consider next—if we consider location first, we ex-
clude distant restaurants from further consideration, perhaps
excluding options that are excellent on other dimensions. As
a result, our meta-level decisions about which factors to con-
sider first have important consequences for our object-level
action, or what we ultimately choose.

'Nelson and Narens (1990) make a similar distinction between
object-level and meta-level processes in their influential theory of
metamemory. There, “object-level” refers to first-order memory
processes (e.g., encoding, recall) and “meta-level” refers to the pro-
cesses that monitor and control the first-order process. Our us-
age of the terms is nearly exactly analogous, but in the domain
of decision-making. See Callaway, Griffiths, Norman, and Zhang
(2023) for a resource-rational model of metamemory using the
meta-level Markov decision process framework employed here.
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Figure 1
Modeling nudging
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Note. (A) We model decision-making as a process in which an agent executes a sequence of cognitive operations (thoughts) that update

their beliefs about the value of the available choices. The space of possible thoughts and beliefs defines the meta-level problem of decision-
making: which factors should the agent consider, and which should they ignore? These meta-level decisions determine the belief upon
which the agent ultimately makes a choice, and therefore the choice itself.

A resource-rational approach to nudging

The key theoretical idea in this paper is that we can under-
stand nudges as changes to meta-level problems (Figure 1).
Rather than changing incentives or limiting choice (changes
to the object-level problem), nudges make it easier to con-
sider some factors than others or change the information the
decision-maker starts with (changes to the meta-level prob-
lem). These changes shape the thoughts a resource-rational
decision-maker is likely to have, which in turn influence their
beliefs, and ultimately their choice. Modeling nudges as
changes to meta-level problems thus provides a precise for-
malization of Thaler and Sunstein’s definition of a nudge as
“any aspect of the choice architecture that alters people’s be-
havior in a predictable way without forbidding any options
or significantly changing their economic incentives” (Thaler
& Sunstein, 2008, p. 6). In our language, nudges are changes
to the meta-level problem (‘“choice architecture”) that do not
also change the object-level problem (‘“forbidding any op-
tions or significantly changing their economic incentives”).

We can understand this idea in a more mechanistic way

by considering the relationship between a computational ar-
chitecture and a choice architecture. Recall that a compu-

tational architecture is an abstract model of the information
processing operations that an agent could bring to bear on a
given task (e.g., making a decision). Typically, it is viewed
as an abstraction of a cognitive architecture, describing an
agent’s internal cognitive capacities. Here, we generalize the
computational architecture to also include the features of the
external world that support making a decision—namely, the
choice architecture. Thus, an agent’s computational architec-
ture for making a given decision is defined by both their (in-
ternal) cognitive architecture and also the (external) choice
architecture. Although changing a person’s cognitive archi-
tecture is difficult and time-consuming, changing the choice
architecture is often quite easy. This gives us a tractable way
to change the meta-level problem associated with a given de-
cision.

To finish the restaurant example, imagine that our aspiring
diner is using a phone application to pick a restaurant. The
application defines the choice architecture and the person’s
ability to process information in the application defines the
abstract cognitive architecture; together, the interaction be-
tween the person and their device defines the computational
architecture. By changing surface-level features of the appli-
cation, for example the relative size of the stars and money
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signs, we can change the relative accessibility of different
features (quality and price). Of course, this doesn’t actually
change the quality or price of the restaurants—these would
be changes to the object-level problem. Instead, it changes
the costs of different strategies one could use to make the
decision—changes to the meta-level problem. Concretely,
making the stars larger would reduce the cost of a strategy
that prioritizes quality (we consider nudges of this type in
Experiment 3).

Providing this mathematically precise definition of nudges
yields three practical benefits.” First, under the assumption
that people are resource-rational (an assumption we revisit
below), we can make quantitative predictions about how dif-
ferent nudges will affect people’s decision making strategies
and choices, all within a common theoretical framework.
Second, formalizing the computational cost of decision-
making allows us to formalize different possible goals for
nudges, such as making decisions easier. Finally, building on
the first two contributions, we can construct optimal nudges,
that is, nudges that best accomplish their goals. We now
briefly expand on each contribution.

Predicting the effects of nudges

A key insight from previous research on nudging is that
we can use psychological theory to guide the construction of
choice architectures. However, rather than originating from a
unified formal framework, this guidance is typically domain-
specific and ad hoc (Chetty, 2015; Yeung, 2012; for similar
arguments about behavioral law and economics, see Rostain,
2000). In contrast, by specifying a mathematically explicit
model of how a person’s decision-making process depends
on different aspects of the choice architecture, we can make
quantitative predictions about the effects of different nudges
across a range of domains. Specifically, we assume that
people will rationally adapt to the new meta-level problem
yielded by a modified choice architecture. This allows us to
make theory-driven predictions about the effects of nudges.
In some cases, it may be possible to make these predictions
purely a priori, without collecting any data. Indeed, none of
the models presented in this paper have any free parameters
(although more naturalistic applications will likely require at
least some model fitting; see General Discussion).

Specifying the goals of nudges

Most previous applications of nudging have set the goal
of encouraging people to make a specific choice, typically
the one the choice architect assumes to be the best. However,
this goal is often not made explicit to consumers, and does
not take into account the possibility that the consumer may
have different values than the choice architect. As a result,
nudges have been criticized for their paternalism and lack
of transparency (Goodwin, 2012; Wilkinson, 2013). Indeed,

surveys indicate that people sometimes find nudges to be ma-
nipulative or unethical (Jung & Mellers, 2016).

An alternative approach is to design nudges with the ex-
plicit goal of increasing the consumer’s utility, i.e., helping
them make the best choice for themselves. However, by fo-
cusing solely on the choices people make, we ignore another
positive effect nudges can have: They can make decisions
easier. For example, consider the choice of which of two
hotels to book as a conference venue, where one hotel has
the unfortunate property of being unavailable on the chosen
dates. Highlighting this information early on will not change
the booker’s final decision, but it could prevent unnecessary
effort evaluating the relative merits of each hotel’s coffee ser-
vice. Resource-rational analysis formalizes the cost of that
effort in a way that allows a choice architect to directly bal-
ance between the ease of decision-making and the possibility
of making a suboptimal choice.

Constructing optimal nudges

Designing nudges is a challenging task. Because there is
little formal theory about why some nudges are effective and
others and not (Yeung, 2012), developing nudges often in-
volves an iterative, experimental approach that can be time-
consuming and expensive. This problem looms especially
large when the space of possibilities is large: For example,
when designing information highlighting nudges, choice ar-
chitects not only have to choose the goal of the nudge, but
also which type of modifications to make. These decisions
can involve complex interactions and tradeoffs—should good
options be made more appealing, or bad options less so?
Should decisions be designed to encourage any good choice,
or only the best one? And how can choice architects ensure
that the nudge is beneficial to people with idiosyncratic pref-
erences?

To address these challenges, we propose an automated
method for constructing mathematically optimal nudges
based on our resource-rational framework. This contribution
builds on the previous two. First, because resource-rational
models can make strong quantitative predictions without fit-
ting parameters to data, we can predict the effect of a candi-
date nudge without running an experiment. Second, because
resource-rational analysis formalizes the cost-benefit tradeoff
underlying resource-constrained decision-making, we can
define mathematically precise goals that balance the ease
and quality of the consumer’s decisions. Together, these two
pieces allow us to define an objective function that takes as
input a candidate nudge and returns a scalar capturing the de-
gree to which the nudge satisfies the choice architect’s goal.
This in turn makes it possible to apply optimization algo-
rithms to design nudges that optimize this objective function.

2For a related discussion about the value of behavioral eco-
nomics for public policy, see Chetty (2015).
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Critically, this whole procedure can be performed automati-
cally, without supervision or human data.

The role of optimality

Before we continue, it is important to clarify the role of
optimality in the proposed framework. Concretely, the op-
timality assumption provides us with a mapping from the
meta-level problem an individual faces onto their expected
behavior. That is, it provides a model of how people’s de-
liberation and choices depends on the decision problem, the
choice architecture, and the person’s cognitive constraints.
Recent successes of resource-rational analysis suggests that
assuming metalevel optimality will yield at least reasonably
accurate predictions (Bhui, Lai, & Gershman, 2021; Lieder
& Griffiths, 2020), something our own results confirm. Crit-
ically, however, the broader framework does not depend on
optimality in particular; any mapping from meta-level prob-
lems to behavior can serve in its place. In fact, it is quite
unlikely that people truly solve all meta-level problems opti-
mally. Instead, optimality provides a first-pass approxima-
tion to the processes by which people adapt their mental
strategies to the demands of different meta-level problems.
Identifying a more accurate model for this adaptation is a
promising direction to improve the framework (see General
Discussion).

Summary

The key insight in resource-rational analysis is to view ra-
tionality as a property of a decision-making process, rather
than as a property of decisions themselves. This conception
of rationality has three theoretical and practical advantages
for the study and development of nudges. First, it provides
us with a formal framework (meta-level MDPs) for model-
ing how factors other than utility influence people’s choices,
allowing us to predict the effect of different choice archi-
tectures. Second, it establishes a broader notion of utility,
one that accounts for the cost of making a decision as well
as the value of the chosen option; this allows us to specify
objectives for nudges that target a more holistic notion of
well-being. Third, drawing on the previous two advances,
we can formalize the design of choice architecture as an op-
timization problem; this allows us to automatically construct
nudges that accomplish arbitrary goals.

In the following section, we provide an overview of the
general framework and describe a specific model that instan-
tiates the framework in the context of multi-attribute choice.
In the remainder of the paper, we will show how this model
can be applied to explain, predict, and optimize the effects of
nudges.

Formal framework

As outlined above, the key insight underlying our frame-
work is that nudges can be viewed as modifications to meta-
level problems. To formalize this insight, we need a way
to formalize meta-level problems; in this section, we ex-
plain how this can be done, illustrating the framework with
an application to multi-attribute choice. We provide a non-
technical summary at the end.

Drawing on a subfield of artificial intelligence known as
rational metareasoning (Matheson, 1968; Russell & We-
fald, 1991), we model meta-level problems using meta-level
Markov decision processes (meta-level MDPs; Hay et al.,
2012). In this framework, a cognitive process is formalized
as a sequential process of executing computational actions
that update an agent’s beliefs about the world. At each mo-
ment, the agent must choose whether to continue deliberat-
ing, refining their beliefs but accruing computational cost, or
to instead stop computing and make a decision. In the former
case, they must additionally decide which computation to ex-
ecute next (i.e., what to think about); in the latter case, they
select the optimal action given their current belief and receive
a reward associated with the external utility of that action. A
resource-rational model can then be derived by identifying
an optimal policy (a strategy for selecting computations) for
the meta-level MDP.

Markov decision processes

The core mathematical object underlying our approach is
the Markov decision process (MDP), illustrated in Figure 2A.
MDPs are the standard formalism for modeling the sequen-
tial interaction between an agent and a stochastic environ-
ment. An MDP is defined by a set of states S, a set of actions
A, a transition function T, and a reward function r. A state
s € & specifies the relevant state of the world. An action
a € A is an action the agent can perform. The transition
function 7 encodes the dynamics of the world as a distribu-
tion of possible future states for each possible previous state
and action. Finally, the reward function r specifies the reward
or utility for executing a given action in a given state.

The standard goal in an MDP is to maximize the expected
cumulative reward attained, that is, the refurn. Importantly,
this may require incurring immediate losses (negative re-
wards) in order to get to a state from which a highly reward-
ing action can be executed. It is typically assumed that the
agent selects their actions based on the current state; the map-
ping from state to action is called a policy, denoted 7. Solv-
ing an MDP amounts to finding a policy that maximizes the
expected return, that is, a mapping from states to actions that,
when followed, maximizes the total reward one will receive
on average.

In addition to their foundational role in artificial intelli-
gence (Sutton & Barto, 2018), MDPs are widely used in
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Figure 2

Formal framework: meta-level Markov decision processes
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Note. (A) A Markov decision process formalizes the problem of acting adaptively in a dynamic environment. The agent executes actions
that change the state of the world and generate rewards, which the agent seeks to maximize. (B) A meta-level Markov decision process
formalizes the problem of deciding how to act when computational resources are limited. The agent executes computations that update their
belief state and incur computational cost. When the agent executes the termination operation L, they take an external action based on their
current belief state. Note that this diagram is simplified to highlight the shared structure between MDPs and meta-level MDPs. The full
meta-level MDP also contains a model of the underlying object-level problem (not shown here). See Appendix A for details.

models of human decision-making (Dayan & Daw, 2008).
MDPs are the formal foundation for models of reinforcement
learning (Niv, 2009) and model-based planning (Botvinick
& Toussaint, 2012; Huys et al., 2015), as well as competition
between the two systems (Daw, Niv, & Dayan, 2005; Kera-
mati, Dezfouli, & Piray, 2011; Kool, Gershman, & Cush-
man, 2017). They have also been used to study information-
seeking (Gottlieb, Oudeyer, Lopes, & Baranes, 2013; Hunt,
Rutledge, Malalasekera, Kennerley, & Dolan, 2016), gen-
eralization (Tomov, Schulz, & Gershman, 2021), and hier-
archical abstraction (Botvinick, Niv, & Barto, 2009; Sol-
way et al., 2014). However, with a few notable exceptions
(Dayan & Huys, 2008; Drugowitsch, Moreno-Bote, Church-
land, Shadlen, & Pouget, 2012; Tajima, Drugowitsch, &
Pouget, 2016), MDPs have primarily been used to model the
sequential decision problems posed by the external world. In
the following section, we show how this framework can be
applied to model the sequential decision problem posed by
one’s own cognitive architecture.

Meta-level Markov decision processes

Meta-level Markov decision processes (meta-level MDPs)
extend the standard MDP formalism to model the sequential
decision problem posed by resource-bounded computation
(Hay et al., 2012). Like a standard MDP, there is a set of
states S, a set of actions A, and a reward function rgpject (We
omit the transition function because we focus on one-shot
decisions). These define the object-level problem: the exter-
nal problem the agent must solve in the world. Additionally,
the meta-level MDP defines a set of beliefs B, a set of com-

putations C, and meta-level transition and reward functions,
Tieta and rmera. These define the meta-level problem: how
to allocate limited computational resources in the service of
choosing an object-level action. For example, when faced
with the object-level problem of deciding where to go for
dinner, solving the meta-level problem would involve decid-
ing which restaurants to consider and which factors to take
into account in the decision.

As illustrated in Figure 2B, the meta-level problem is it-
self a sequential decision problem, analogous to one defined
by a standard MDP. However, in the meta-level problem, the
states are replaced by beliefs (mental states) and the actions
are replaced by computations (cognitive operations). The
meta-level transition function describes how computations
update beliefs, and the meta-level reward function captures
both computational cost and the object-level reward of the
action that is ultimately executed. We provide a general for-
mal definition of meta-level MDPs in Appendix A. In the
next section, we define a specific meta-level MDP for multi-
attribute choice.

A meta-level MDP for multi-attribute choice

In a multi-attribute choice problem, an agent must choose
one out of a set of options that differ on a number of features,
each of which the agent values to varying degrees. For ex-
ample, consider the problem of purchasing a car; there are
many options available, each of which has features such as
price, fuel efficiency, comfort, and horsepower. The over-
all utility associated with purchasing each car depends on
all of these features. To make the best possible choice, one
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would thus need to consider all the features for every vehi-
cle one could buy. However, the computational cost of ex-
haustively evaluating every car on the market makes such a
strategy impractical—indeed—irrational. Instead, a shrewd
consumer would consider only a subset of all the possible
options and features, first evaluating a large set of candidates
on the most important features and only carefully evaluating
the top contenders. Here, we formalize this kind of decision
problem as a meta-level MDP.

We begin with the object-level problem, that is, the deci-
sion the agent wishes to solve. We assume that the agent can
select only one from a set of options that vary on a number of
features. The utility of each option is a linear combination of
its features, weighted by the agent’s utility for each feature.
We now formalize the object-level problem in terms of states,
actions, and a reward function.

States. A state s € S specifies the features of the options
available to the agent, as well as the agent’s preferences for
those features. Concretely, a state is defined by a pair (X,
w), where X is a matrix such that x, s is the value of feature
f for option a, and w is a vector such that wy is the weight
(i.e., utility) the agent puts on feature f. Critically, the agent
does not have direct access to the complete state, but instead
maintains a belief about the state as detailed below. Here,
we will assume that the agent has perfect knowledge of w
(their preferences) but no prior knowledge of X (the feature
values).

Actions. Each action a € A selects one of the available
options. There is one action for each option.

Object-level reward. The object-level reward for each
action is simply the utility of the chosen option. We assume
that this utility is a linear combination of the option’s fea-
tures, weighted by the utilty for each feature:

robject(sva) = Zfoa,f. D
7

Note that the w and x on the right-hand side of the equation
refer to the elements of s on the left-hand side.

We now formalize the meta-level problem, that is, the
problem of how to decide which action to choose. Char-
acterizing the precise computational architecture underly-
ing human multi-attribute choice is an active research area
(Berkowitsch, Scheibehenne, & Rieskamp, 2014; Bhatia &
Stewart, 2018; Busemeyer, Gluth, Rieskamp, & Turner,
2019; Cohen, Kang, & Leise, 2017; Howes, Warren, Farmer,
El-Deredy, & Lewis, 2016; Noguchi & Stewart, 2018; Roe,
Busemeyer, & Townsend, 2001; Ronayne & Brown, 2017,
Russo & Dosher, 1983; Trueblood, Brown, & Heathcote,
2014; Usher & McClelland, 2004). For simplicity (and con-
sistency with the experimental paradigm that we employ),
we will use a highly simplified architecture in which the be-
lief state simply captures whether each feature has been con-
sidered, assuming that all considered features are perfectly

integrated into the subjective expected utility. Importantly,
this is not intended to be an accurate characterization of the
computations involved in naturalistic multi-attribute choice.
Instead, we make these assumptions to illustrate the frame-
work in a simplified setting.

Beliefs. A belief b € 8 encodes the agent’s knowledge
about the feature values and weights. Formally, it is a distri-
bution over states. We assume that the agent knows their own
preferences; the belief thus encodes the true weight for each
feature, w. However, they are uncertain about the feature
values X, and thus uncertain about the overall utility of each
option. As illustrated in Figure 3, we capture this uncertainty
with a set of independent normal distributions for each fea-
ture value, such that the belief about feature x, s is defined

b(x,,5) ~ Normal(ug,r, 04, r)- 2)

The initial belief state captures the knowledge the agent has
about the general distribution of feature values in the en-
vironment. We assume that feature values are distributed
Normal(ug, 09) and that the agent knows this. The initial
belief state is thus defined s = po and o,y = o for all a
and f. That is, before deliberating, the agent does not know
the true feature values for any option, and assumes that each
option is equally likely to be the best.

Computations. A computational operation ¢ € C corre-
sponds to considering one feature of one option. By perform-
ing a computation, the agent can form a more accurate belief
about the true object-level state and identify better options.
Concretely, each computation measures the exact value of the
feature and integrates that information into the belief state
(as detailed in the next paragraph). We use ¢, s to denote
the computation that considers feature x, ;. All meta-level
MDPs additionally include a termination operation L, which
denotes that computation should be terminated and an object-
level action should be selected based on the current belief
state.

Meta-level transition function. The meta-level transi-
tion function Ty, describes how considering each feature
updates the belief state:

bis1 ~ Trea(by, c1, ). 3)

Each computation integrates the exact value of one feature
into the belief state. If ¢; = ¢y, the updated belief b, is
identical to the previous belief b, except that

Haf = Xaf

4
O'a,fZO. ( )

That is, after considering a feature, the agent’s belief about
the considered feature will simply be its true value. The
agents’ beliefs about the unconsidered features will be iden-
tical to their beliefs about those features before the computa-
tion.
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Figure 3

A meta-level MDP for multi-attribute choice
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Note. The agent must select among a set of options that vary on a number of features that determine the total utility of each option (for
this example, we assume equal weighting). Making this decision can itself be modeled as a sequential decision problem in which the agent
updates their beliefs by executing mental operations. Each mental operation evaluates one feature of one option and updates the belief about
the option’s utility accordingly. At some point, the agent stops deliberating and selects the option that is best according to their belief.

Meta-level reward function. The reward function ryeq,
describes both the cost of computation and also the utility
of the option that is ultimately chosen. For the former, we
assume that considering a feature value has some cost. Dif-
ferent features of different options may have different costs,
and that this cost does not depend on the belief or world state.
Thus,

rmela(b7 Ca,f> S) = _/la,f forc # L. (5)

where A, s specifies the cost of considering feature f of op-
tion a. In our experiments, these costs will correspond to ex-
plicit information-gathering fees. In general, the meta-level
reward function may include implicit temporal opportunity
costs and mental effort costs, in addition to any explicitly
imposed information-gathering costs.

The reward for terminating computation (i.e., executing
1) is the reward associated with the external choice the agent
makes based on their current belief state. It is defined as

Tmeta(b, L, §) = robject(ss a*(b)) = Z W Xa*(b),f (6)
f

where a*(b) is the action® the agent chooses; specifically, it
is the action with maximal expected value given the current

belief state,
a*(b) = argmax Eh [robject(s, a)] 7
= argflnax (X,‘];)~b Zf: W xa’f} (8)
= argmax Z Wi ta,f- 9
“ f

Thus, the meta-level reward for termination is the true utility
of the action with maximal estimated utility. Importantly, the
agent cannot know the true reward until they have committed
to a choice because it depends on the state, which the agent
does not know. They can, however, determine the expected
reward given their current belief state (the “marginal reward
function” defined in the Appendix). That is, the agent may
or may not identify the option with the highest utility, but
always chooses the option with the highest expected utility
based on their final belief state. Regardless of their beliefs,
the agent’s reward for their choice is then the true utility of
the chosen option.

Meta-level policy. Although not technically part of the
meta-level MDP itself, in order to simulate cognitive pro-
cesses and make behavioral predictions, we need one final

3For notational clarity, we assume a single optimal action. In the
actual model implementation, ties are broken randomly; thus, a*(b)
is more precisely a uniform distribution over all optimal actions,
and rpen(b, L, s) takes an expectation over them.
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component: the policy that selects which computation to ex-
ecute in each possible belief state. A resource-rational agent
will follow the optimal policy, or the policy that maximizes
expected meta-level return. However, meta-level MDPs typ-
ically have massive belief spaces that make computing the
optimal policy intractable. To address this, early work in ra-
tional metareasoning proposed using a one-step lookahead
approximation, termed the “meta-greedy” policy because it
greedily maximizes meta-level reward (Russell & Wefald,
1991). Interestingly, the idea of approximating optimal se-
lection of computations with a one-step lookahead was in-
dependently proposed by Gabaix, Laibson, Moloche, and
Weinberg (2006) specifically in the context of multi-attribute
choice. Here, we will also use this approximation of the
resource-rational strategy; that is, we derive predictions by
assuming that people follow an approximation of the optimal
solution to the meta-level problem. See Appendix B for a
derivation of the meta-greedy policy for the meta-level MDP
defined above.

Summary

In this section, we described a general formal frame-
work for modeling decision-making as a sequential deci-
sion problem: meta-level MDPs. In this framework, a
decision-making process is modeled as a sequence of basic
information-processing operations (or “computations”) that
an agent executes in order to update their beliefs about the
values of different actions they can take (Figure 2B). Iden-
tifying an (approximately) optimal policy for a meta-level
MDP yields a resource-rational decision-making strategy—
that is, a way to determine which information to consider and
which to ignore on any given decision.

We then presented an application of the general frame-
work to multi-attribute choice. In this simplified model, we
assume that the utility of an option is a linear combination
of its features, with the weights for each feature correspond-
ing to the agent’s preferences. At the beginning of the de-
cision, the agent does not know the values of any option’s
features. Instead, they only have some sense of what val-
ues different features are likely to take have. This is formal-
ized in their prior beliefs, which also form their initial belief
state. Because the agent has the same initial beliefs about
each feature value, the best they can do before deliberation
is to choose randomly among the options. To make a better
decision, the agent needs to deliberate. In particular, they
can consider one of the feature values, which will update
their belief of that feature to its true value. We formalize
this consideration as a computational action that moves the
agent from their initial belief state to a new belief state, in
which they are certain about the value of one option’s feature
and have a more precise (but still uncertain) belief about the
utility of the corresponding option. Based on this new be-
lief state, they must choose what to think about next (which

computational action to execute), which will bring them to
yet another belief state. However, each computation incurs a
cost. Thus at some point, usually before considering all the
possible information, the agent will ferminate computation,
choosing whichever option has the highest utility according
to their final belief.

This framework provides a natural way to model nudges
on multi-attribute choices—nudges change the meta-level
problem the agent faces by modifying the costs of certain
computations or their initial belief state. These change the
optimal sequence of computations a resource-rational agent
makes before their choice, which in turn influence their belief
at the time of choice and their subsequent decision. Nudges
do not, however, change the object-level problem, and differ-
ent nudges will modify the meta-level problem in different
ways. That is, resource-rational analysis offers a framework
for modeling how nudges affect the decision problem, but
does not provide guidance on how to best model the nudge
itself. The power of this approach is that many different
types of nudges can be modeled using relatively small mod-
ifications to the meta-level MDP. However, it is important to
note that the effectiveness of our framework is constrained
by both the accuracy of resource-rational analysis in approx-
imating human cognition, and the degree to which we accu-
rately capture a nudge’s effects on the meta-level problem.
In the remainder of the paper, we will apply this approach to
modeling existing nudges and identifying new choice archi-
tectures. But first, we describe the paradigm we will use to
simulate nudging in a controlled experimental environment.

An experimental paradigm for studying nudges

A key challenge for studying human decision-making
(and by extension, the effect of choice architecture) is that
the decision-making process is unobservable. To address
this challenge, Payne, Bettman, and Johnson (1988) intro-
duced the Mouselab paradigm, which makes participants’
decision-making processes observable. The basic idea is
to occlude decision-relevant information and require partic-
ipants to click on different areas of the screen to reveal it.
Which pieces of information they uncover, and the order in
which they do so, provides a highly detailed trace of their
decision-making process.

In this paper, we extend this classic paradigm to opera-
tionalize three commonly used forms of nudges. In our ver-
sion of the task (shown in Figure 4), participants are faced
with a multi-attribute decision-making problem displayed
as a table, with columns corresponding to choice options
and rows corresponding to features on which the options
vary. Concretely, the features correspond to different types
of prizes, the values of which vary from trial to trial (shown
in the leftmost column). To reveal the number of one type of
prize for a given option, the participant must click the corre-
sponding cell some number of times (the number may vary);
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Figure 4

Experimental interface for Mouselab
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Youwon 2 A prizes, 7 B prizes, 7 C prizes, 7 D prizes, and 9 E prizes, totaling 199 points.

Total earnings (prize values minus click cost): $0.063.

Note. On this problem, participants chose between five baskets, represented by the table columns. Each basket has five different prize types,
with the value of each of these prizes given in the leftmost column. To reveal prize counts, participants could click on the corresponding red
box once, with each click costing one point. At any point, participants could stop choosing and select a basket (e.g., basket 1 in this example).
The participant then earned a bonus determined by the total value of the prizes in the selected basket minus the cost spent revealing boxes

(30 points are worth one cent).

we impose an explicit cost of one point per click.

Besides making the decision-making process observable,
the Mouselab paradigm has the convenient property of ex-
actly externalizing the meta-level MDP for multi-attribute
choice defined above. In particular, the table of prize num-
bers corresponds to the feature matrix X, the prize values
correspond to the weights w (together, these form the state),
the information currently visible in the table corresponds to
a belief b, revealing a cell corresponds to a computation c,
and the number of clicks necessary to reveal each cell cor-
responds to the meta-level reward function (specifically, A, ¢
in Equation 5). Modifying the Mouselab problem (e.g., re-
ducing the number of clicks necessary to reveal some piece
of information) thus corresponds to modifying the meta-level
MDP (e.g., reducing the cost of considering certain features).

Using a paradigm that maps directly onto a meta-level
MDP allows us to quantitatively evaluate the resource-
rational approach to nudges without addressing the consider-
able challenge of modeling computational architectures for
naturalistic decisions. In particular, the external structure of
the decision problem (the choice architecture) is a reason-
able approximation for the full computational architecture;

we do not need to model any purely internal cognitive pro-
cesses. Of course, addressing this challenge will be essential
for the approach to be applied in practice, and will be a crit-
ical direction for future research if our approach is found to
be promising.

In the following sections, we illustrate how our approach
can be used to understand three existing nudges: default op-
tions, suggesting alternatives, and information highlighting.
We model each of these nudges as a modification to the basic
meta-level MDP for multi-attribute choice described above.
In each case, the modification has systematic consequences
for the computations a resource-rational agent executes, and
therefore on the choice they make. To test these predic-
tions, we implement each class of nudge within the Mouse-
lab paradigm, and compare the observed behavior with the
simulations. In each case, we confirm most or all of the key
behavioral predictions.

Experiment 1: Default options

We begin with a simple but surprisingly effective class of
nudges, default options. As the name suggests, these nudges
involve changing which option people will get if they don’t
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Figure 5

Experiment 1: Formalizing default options
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Note. The decision maker assumes that the default option is the best choice for a typical person, so their initial belief assigns higher value to
the default option’s features. This influences their choice both directly and indirectly—by changing which cognitive operations they execute.
Circles represent belief states, lines represent cognitive operations, and diamonds represent choices. Hypothetical events are shown in gray

and nudges are shown in light blue.

actively select another one. Although the efficacy of such
nudges is due in part to changing the outcome for people that
don’t consider the decision at all, defaults still have an effect
when people do deliberate (Dhingra, Gorn, Kener, & Dana,
2012). Here, we focus on this latter pathway.

Model

As illustrated in Figure 5, we model default nudges as
modifications to the agent’s initial belief state. This is consis-
tent with the common assumption that the agent interprets the
default as a recommendation (Johnson & Goldstein, 2003;
Johnson et al., 2012; McKenzie et al., 2006). In particular,
we assume that the default option is the one that is best for the
“average” person, and further assume that the agent knows
this and integrates the information provided by the default
option accordingly. Intuitively, they will begin the decision-
making process with the expectation that the features of the
default option are better than average. In some cases, this
initial expectation will lead the agent to avoid deliberation
altogether and simply choose the default; in other cases, the
agent will engage in some deliberation in order to tailor their
choice to their own idiosyncratic preferences. However, even
in the latter case, the default still influences their choice.

Recall that we model individual variability in preferences
as different weights of a linear utility function (Equation 1).
For simplicity, we assume that the weights are strictly pos-
itive and that each feature is equally important on average.
The average preferences can then be characterized by w = 1,
and the default option for a decision problem with true fea-

ture values X is

d(X) = argmax ropject((X, 1), a) = argmax Z X (10)
a a f

That is, the default option is the one with the greatest sum of
unweighted feature values.

We assume that the agent knows this is how the default is
chosen, and adjusts their initial belief accordingly. To main-
tain independent Gaussian beliefs about each feature value,
we use a mean-field approximation to this belief update. That
is, the initial belief is updated with

W, o")
(W, 07)
where u* is the average value of a feature for an option that
is best for the average person and ™ is the same for an op-
tion that is not best. Likewise, ot and o~ are the standard
deviation of the feature values in each case. We estimate
these values numerically in one million simulated decision
problems, separately for each problem size. As one would
expect, this results in a higher prior mean for the features of
the default and a lower prior mean for all other features. o*
and ot are both slightly lower than o.

To preview the results, the model predicts that people will
be more likely to choose an option when it is presented as the
default, and this effect is larger for more complex problems
(those with more options and/or features). Importantly, this
holds even in cases where the model does not immediately
accept the default without performing any computation. Fur-
thermore, the model predicts that providing a default option

ifa=d

, 11
ifa+d (1)

(:ua,f’ O-a,f) = {
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Figure 6

Experiment 1: Example default-option trial

Do you want to choose basket 3?
It pays the most when the prizes are equally valuable.

Basket 1 Basket 2 Basket 3 Basket 4 Basket 5

Note. On a default trial (illustrated), participants could accept or reject a recommended basket that paid the most if the prizes were equally
valuable (i.e., it identified the basket with the most prizes). If a participant did not accept the default, the banner was removed and participants
could make their own choice. However, the basket label for the default option remained highlighted in green.

will never reduce the agent’s utility (including both choice
payoff and computational cost), although it will be most ben-
eficial to people who have typical preferences. We now test
these predictions.

Methods

For this and all future experiments: data, code, pre-
registrations, and experiment demos can be found at
https://github.com/fredcallaway/optimal-nudging. All anal-
yses were pre-registered, unless otherwise noted. All exper-
iments were approved by the institutional review board of
Princeton University (protocol number 10859), and all par-
ticipants gave informed consent.

We tested our model predictions on Mouselab, with de-
fault options presented in a banner above the Mouselab table
at the start of the trial (see Figure 6). The default option iden-
tified the basket that would pay the most if all the prizes were
equally valuable—that is, the basket with the most prizes
(ties were broken randomly). Participants were informed of
this selection process and were reminded of it each time a
default option as presented. When the default banner was
presented, all click events for the Mouselab table were dis-
abled and the default option was highlighted in green for vi-
sual saliency. Participants then chose between accepting the
default immediately without revealing any prize counts, or
making their own choice on the trial. If participants chose
to make their own choice, the default banner was hidden for
the remainder of the trial, but the basket label for the default

option remained highlighted in green.

To determine prize counts, we sampled from a normal dis-
tribution with a mean of 5 and a standard deviation of 1.75,
and then rounded and truncated these values so no counts
were below 0 or above 10. To reveal prize counts, partici-
pants could click on the corresponding cell twice, incurring
a cost of two points. Prize values were randomly sampled
with the constraint that they sum to 30 points and each prize
was worth at least one point.

On each test trial, participants earned a bonus equal to the
total value of the prizes in their selected basket minus the
points they spent revealing prize counts. At the end of the
experiment, the total bonus each participant earned was paid
to them in USD, with 30 points equaling one cent.

Participants completed 2 practice trials and 32 test trials.
Half of the test trials were control trials, where no default op-
tion was presented, and half were nudge trials with a default
option. Furthermore, half of the problems had two baskets
(i.e., two Mouselab columns) and half had five baskets. Fi-
nally, half had two prize types (i.e., two Mouselab rows) and
half had five prize types. There were thus three binary pa-
rameters determining each problem—nudge presence, num-
ber of baskets, and number of features. The stimuli were con-
structed so that each participant completed four problems for
each of the eight unique parameter combinations, with trial
ordering randomized. Participants earned $1.30 for partici-
pating in the study plus an average bonus of $1.79.

We recruited a preregistered sample size of 400 US-based
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Figure 7

Experiment 1: Model predictions and experimental results for default options
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Note. (A) The probability that the option which is best for the average person (the “default”) is chosen, depending on whether it is presented
as the default option or not. Each line shows one problem complexity level, defined by the number of features and options. (B) Net earnings
(payoff minus click cost) as a function of preference idiosyncracy (L1 distance from the mean prize-value vector). The case with a default
option is shown in blue. For this and all future results figures: the left panels show the prediction of the resource-rational model. The right
panels show experimental data, excluding participants who revealed no information (and therefore chose a basket randomly) on more than
half of control trials. Plots with full data are included in Appendix C. Points show binned means, error bars show 95% confidence intervals
computed by bootstrapping, and regression lines show generative additive model fits with standard error confidence bands.

participants from Prolific. This sample size was selected by
performing a power analysis on simulated data from a meta-
greedy decision maker on the same set of problems we used
in the experiment. Participants who failed to pass a compre-
hension quiz in their first three tries were excluded from the
experiment.

After collecting and analyzing the data, we discovered that
some participants did not collect any information (and there-
fore chose randomly) on the majority of trials, even in the ab-
sence of a default option. While our pre-registered statistical
tests were nonetheless significant, the effect sizes were sub-
stantially reduced by the large amount of random respond-
ing. For this reason, we exclude all participants who made a
choice without gathering any information on more than half
of control trials (those without a default option). We apply

the same exclusion criterion to all experiments, unless other-
wise noted. Plots and statistics for the full dataset are pro-
vided in Appendix C. For Experiment 1, we excluded 102
participants (26%), leaving 298 participants in the analysis.
We also excluded practice trials, as planned, leaving 9536
trials to conduct our pre-registered tests. As pre-registered,
all reported p values reflect one-tailed tests to confirm the
relevant model prediction.

Results

Figure 7A shows the probability that the option which is
best for someone with average preferences is chosen, de-
pending on whether it is presented as the default. In line
with prior research, the model predicted—and our results
confirmed—that presenting an option as the default increases
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Figure 8

Experiment 2: Formalizing suggested alternatives
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Note. The suggestion is modeled as an addition of a new option to the choice set along with information about that option’s best feature.
Suggestions made at the onset of the decision are more effective than those made after an initial choice (as is often done) because a late
suggestion must override the previously considered information, while an early suggestion discourages considering other options at all. See

Figure 5 for legend.

the probability of selecting it: participants chose the basket
with the most prizes on 89.8% of trials when it was presented
as the default option, compared with 55.7% on control tri-
als. This difference was significant, as revealed in a logis-
tic regression predicting default-chosen from nudge-present
(z=34.77, p <.001).

The model predicted that the default will be chosen with-
out any deliberation on 74.7% of trials. However, the
resource-rational agent is still more likely to choose the de-
fault after deliberating because the information encoded in
the default option remains relevant as long as not all fea-
ture values have been considered. On the 25.3% of trials in
which the model did not choose the default immediately, it
chose the default on 76.2% of trials (compared to 62.1% for
control trials). Consistent with this, in the 23.6% of trials on
which our participant did not immediately choose the default,
they were still more likely to select it eventually (63.7% vs.
57.8%; z = 3.53, p < .001). This suggests that participants’
choices were affected by the informational content of the de-
fault over and above an automatic tendency to simply accept
the default without any deliberation.

The model also predicted that the default would have a
more pronounced effect for more complex decisions (opera-
tionalized as the number of options and features). Intuitively,
this is because the default affects the agent’s prior beliefs, and
these priors play a stronger role when more feature values
are left uncovered. However, the model predicted that peo-
ple would be less likely to choose the default option when
they had more idiosyncratic preferences (operationalized as
the L1 distance of w from its mean value across individu-
als; recall that the preference weights, w, are implemented
in the experiment as the values of different types of prizes).
To test these predictions, we ran a logistic regression pre-

dicting default-chosen with many-options and many-features
(binary variables capturing whether there were five or two
options or prizes, respectively), as well as idiosyncrasy (the
L1 distance from the uniform weight vector), nudge-present,
and the interaction of nudge-present with the other vari-
ables as independent variables. The interaction terms pro-
vide the critical tests, as they reveal the effect of the default
after controlling for the main effects of problem complexity
and idiosyncrasy on selection of the option with the most
prizes. As predicted, we found significant positive interac-
tions with many-options (z = 5.06, p < .001) and many-
features (z = 1.66, p = .049), and a significant negative
interaction with idiosyncrasy (z = —5.87, p < .001). Thus,
consistent with the model’s predictions, people were more
likely to choose the default option (relative to baseline) when
the problem was more complex, but they were less likely to
choose it the more their preferences differed from average.

Finally, we investigated the effects of defaults on partic-
ipant earnings. As illustrated in Figure 7B, the model pre-
dicted that defaults would be beneficial for everyone, but that
this benefit would be largest for those with less idiosyncratic
preferences (that is, trials with preference weights closer
to the uniform distribution). Consistent with this predic-
tion, participants achieved higher net earnings (payoff mi-
nus click cost) when a default option was presented (174.44
points vs. 164.64 points; linear regression: #(9534) =
14.60, p < .001), but there was a significant negative inter-
action between nudge-present and idiosyncrasy (#(9532) =
—4.45, p <.001).

Discussion

Our findings replicated and extended previous findings;
presenting an option as the default increased the chance it
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Figure 9

Experiment 2: Example pre-choice suggestion trial

Consider basket 1 - it has 6 B prizes!
Basket 1 Basket 2 Basket 3 Basket 4 Basket 5 Basket 6

A: 14 points
B: 16 points 6

Note. On pre-choice suggestion trials, a random basket at the start of the trial was chosen to be highlighted, and its highest feature value
(i.e., prize count) was revealed. On post-choice suggestion trials, a new basket was revealed and highlighted using the same procedure after

a participant chose a basket.

was selected, and helped participants make better choices
(Choi et al., 2006). Furthermore, default nudges were more
effective on more complex choices: increasing the number
of options and features increased the relative probability of
selecting the default. However, default options were not ef-
fective for everybody—participants with more idiosyncratic
preferences were less likely to choose the default, extend-
ing related findings that the impact of default options varies
across groups (Beshears, Choi, Laibson, Madrian, & Wang,
2015; Lofgren et al., 2012). Finally, our model correctly
predicted that people were more likely to choose the default
not only when they made a choice without deliberation, but
also on trials where they revealed feature values. In this way,
our results unify the “cognitive effort” (Johnson & Goldstein,
2003; Johnson et al., 2012) and “recommendation” (Gigeren-
zer, 2008; McKenzie et al., 2006) theories of defaults in a
common rational framework.

Experiment 2: Suggested alternatives

We now apply our framework to suggesting alternative op-
tions (ones that the agent would not have otherwise consid-
ered). Such suggestions could be made before the decision
begins, as in recommender systems, or after an initial choice,
as in up-sells. Here, we use our resource-rational framework
to investigate and compare both settings.

Model

As illustrated in Figure 8, we model alternative sugges-
tions as the addition of a new option, &, to the choice set. To
capture the positive information that typically accompanies
a suggestion (try the kale; it’s healthy!), we assume that the
best feature of the suggested option is immediately revealed
to the agent at no cost.* Formally, we identify the best feature

as

f = argmax x; s, (12)
f
and we update the agent’s belief state by setting

Ma,f = Xaf
13
Oaf =0. ( )

Note that this is equivalent to forcing the agent to execute
Ca,f-

We consider two versions of the suggestion nudge, which
differ in when the suggestion is made. In the early suggestion
version, we present the suggested option along with the orig-
inal set, highlighting its best feature. In the late suggestion
version, we first allow the agent to make an initial decision
and then present the suggested option, giving them the option
of changing their initial choice.

To preview the results, the model predicts that people will
overall be more likely to choose the suggested option than
chance, but that this suggestion will be more effective in
complex environments. The model also predicts that early
suggestions will be more effective than late suggestions. This
is because early suggestions can influence the entire deliber-
ation process.

Methods

We tested our predictions for alternative suggestions using
a similar Mouselab setup as our defaults experiment (Fig-
ure 9). Suggestions were given either at the start of the trial
(pre-choice suggestion) or after the participant has chosen a

4One could also model the suggestion as a more general recom-
mendation, as we did for defaults. We chose this alternative ap-
proach because suggested options are often not best for most peo-
ple.
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Figure 10

Experiment 2: Model predictions and experimental results for suggested alternatives
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Note. Each panel shows the probability that the suggested option was chosen depending on whether it is presented at the beginning of the

trial or after an initial decision has been made.

basket (post-choice suggestion). As in our defaults experi-
ment, these suggestions were presented as a banner at the top
of the screen. At the same time the banner was presented,
the highest prize count for the suggested basket was revealed
(ties were broken randomly). Because suggested alternatives
often involve introducing a new option, on trials with sugges-
tions, there were six baskets to choose from, whereas there
were only five on control trials (note that the sixth basket
on post-choice suggestions was shown only after the partici-
pant has chosen a basket). On pre-choice trials, the suggested
basket was chosen randomly from the six baskets. On post-
choice trials, the right-most basket in the table was revealed
and suggested. Unlike the defaults experiment, click events
were not disabled when the banner was introduced, and the
banner was displayed for the remainder of the trial after being
shown.

Participants completed two practice trials and 30 test tri-
als. No suggestion was given on control trials. Each problem
had either two prize types or five prize types (i.e., features).
The problems were arranged so that each participant com-
pleted 10 control problems (five with two features and five
with five features), and 20 nudge trials (five for every unique
combination of nudge timing and number of features), with
problem order randomized. Participants earned $1.30 for
participating in the experiment plus an average bonus of
$1.66.

We recruited a preregistered sample size of 400 partici-
pants from Prolific, limiting our study to those living in the
United States.” As in Experiment 1, this sample size was se-
lected by performing a power analysis on simulated data, and
participants were required to pass a comprehension test in
their first three tries. Prize counts, prize values, and bonuses
were also determined in the same way as in Experiment 1.

We excluded 128 participants (32%) who gathered no in-
formation on more than half of control trials, leaving 272
participants in the analysis. We also excluded practice trials,
as planned. We thus conducted our pre-registered tests on
8160 trials. As pre-registered, all reported p values reflect
one-tailed tests to confirm the relevant model prediction.

Results

The key results are illustrated in Figure 10. Replicating
previous findings and confirming our prediction, we found
that participants chose suggested options significantly more
often than chance, as measured by a chi-square test of inde-
pendence (32.9% vs. 16.7%, x*(1) = 1030, p < .001). The
model predicts this effect because revealing the best feature
of an option ensures that it is considered, while it might not
have been otherwise.

As for default options, the model predicted that sugges-
tions would be more effective for complex decisions. This
prediction is somewhat counterintuitive because the single
revealed feature has less weight when there are many fea-
tures, suggesting that the suggestion should be /ess effective
in this case. However, when there are few features, the model
typically gathers all the information needed to choose an op-
tion with maximal or near-maximal value; thus there is little
room for the suggestion to influence its choice. Contrary to
these predictions, however, we did not find any difference in

>We previously ran an experiment where some participants were
told how we selected the revealed feature. However, participants
had trouble understanding this process and so the present experi-
ment does not include this information. Data for this experiment is
available at https://github.com/fredcallaway/optimal-nudging.
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Figure 11

Experiment 3: Formalizing information highlighting

attention drawn
towards certain
features

Note. When all information is equally accessible, many possible sequences of cognitive operations are possible and both choices are plausi-
ble. Highlighting some information reduces the cost of considering that information, leading the agent towards certain trains of thought and
away from others. This in turn makes some choices more likely. See Figure 5 for legend.

the effectiveness of the suggestions on trials with five vs. two
features (z = 1.49, p = .068).

The most striking model prediction concerns the relative
efficacy of early and late suggestions. The model predicted
that early suggestions would have a larger effect than late
suggestions, especially for more complex problems. This ef-
fect occurs because the early suggestion can influence—or
rather, preclude—later deliberation. When the suggestion is
made early, the agent may avoid the effort of searching for
a better option, and simply takes the suggestion. In contrast,
when the suggestion is made late, the agent will have already
invested some effort into finding the option that is best on the
features they value most. The positive information about the
suggested item is unlikely to outweigh this earlier evidence.
In line with our predictions, participants were more likely to
choose the suggested option when it was presented before
an initial choice (z = —12.46, p < .001). However, we did
not observe a significant interaction with problem complex-
ity (z = =0.55, p = .293).

Discussion

Replicating previous research, we found that suggesting
an alternative option significantly increased the chance that
participants would choose it. Furthermore, as we predicted,
this effect was larger for suggestions that were given before
a decision. On these trials, participants could make good
choices with minimal cognitive effort, offering a rational,
mechanistic account of how different suggestions change the
“script” for making a choice. Together, these findings allow

us to capture two theories of suggestions in a single model
(Heidig et al., 2017; Schwartz et al., 2012). Our results may
also shed light on why default options (Hummel & Maedche,
2019) and recommender systems (Haubl & Trifts, 2000) can
be so effective—because they manipulate the choice archi-
tecture at the start of deliberation, they influence the entire
decision process and can thus have substantial impacts on
choice.

Experiment 3: Information highlighting

The final class of nudges we consider are those that draw
the agent’s attention to specific features or options. This class
of nudges extends the information-revealing mechanism we
used to model suggestions to a case in which the nudge does
not force the agent to consider a specific piece of informa-
tion, but instead makes it easier to consider some informa-
tion.

Model

As illustrated in Figure 11, we model information high-
lighting as a reduction in the cost of certain computations.
Intuitively, it is easier to consider information that is printed
in large text on the front of a package versus small text on the
back. Formally, this is captured in the 4, ; parameters (Equa-
tion 5), which assigns a cost to considering each feature of
each option.

Many different types of nudges can be modeled as changes
to the cost of certain computations. For example, to model
a “foodscape” nudge, in which healthy foods are placed in
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Figure 12

Experiment 3: Example information-highlighting trial
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Note. All click costs were initially set to three points. On nudge trials, the click costs for the highlighted prize’s boxes were reduced to one
point. On control trials, a highlighted prize was selected but its boxes were not put on sale.

prominent locations, we would reduce the computational
cost of evaluating all the features for the healthy choices.
Similarly, to model the “traffic light” nudge, in which the
sugar and fat content of foods are prominently displayed, we
would reduce the cost of evaluating the salt and fat feature
for all the options. In our experiment, we consider a simpli-
fied form of the traffic light nudge in which only one feature
is highlighted. Thus, on each trial we randomly select one
feature, f, and set 4, F= 1 for all a, with all other values
taking A, 5 = 3.

The model predictions are straightforward. Because the
agent knows the cost of each computation in advance, reduc-
ing the cost of a computation through information highlight-
ing increases the chance that the agent will consider that in-
formation. As a result, the highlighted information will have
a greater impact on choice, and the agent will choose options
that are better on the highlighted feature.

Methods

We tested our predictions on traffic light nudges using the
same Mouselab process-tracing paradigm we used to study
default nudges and suggestions. All problems had five bas-
kets and three prize types, and all click costs were initially set
to three points. Prize counts and bonuses were determined
following the same procedure as the defaults experiment.

On every trial, one prize was randomly selected as the
highlighted prize. On nudge trials, the click cost of all the
highlighted prize’s values was reduced from three points to
one point (see Figure 12). On control trials, the highlighted
prize’s click costs were not changed. The value of the high-
lighted prize was sampled to achieve a close-to-uniform dis-
tribution for each participant. Concretely, on nudge trials, the
value was sampled without replacement from either the set

of even integers between 2 and 28 or the set of odd integers
between 1 and 27 (both inclusive), with the set (even or odd)
determined via simple randomization separately for each par-
ticipant. The value of the highlighted prize on control trials
was sampled without replacement from the complementary
set of integers (i.e., if the highlighted prize values on nudge
trials were sampled from the even integers, the highlighted
prize values on control trials were sampled from the odd in-
tegers). On both control and nudge trials, the prize values of
the two non-highlighted prizes were randomly sampled with
the constraint that all three prize values sum to 30 points and
each prize was worth at least one point.

Participants completed one practice nudge trial and one
practice control trial, then 14 test nudge trials and 14 test
control trials. Trial order for both practice and test trials was
randomized. Participants earned $1.30 for completing the
experiment, plus an average bonus of $1.51.

We recruited a preregistered sample size of 150 partici-
pants from Prolific, limiting our study to those living in the
United States. As in the previous experiments, this sample
size was selected by performing a power analysis on sim-
ulated data, and participants were required to pass a com-
prehension test in their first three tries. Prize counts, prize
values, and bonuses were also determined in the same way
as previous experiments.

We excluded 62 participants (41%) who gathered no in-
formation on more than half of control trials, leaving 88 par-
ticipants in the analysis. We also excluded practice trials,
as planned. We thus conducted our pre-registered tests on
2464 trials. As pre-registered, all reported p values reflect
one-tailed tests to confirm the relevant model prediction.
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Figure 13
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Experiment 3: Model predictions and experimental results for information highlighting
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Note. (A) The average number of cells that were revealed for the highlighted feature. (B) The average value of the highlighted feature for
the chosen item. In both rows, the gray line shows a baseline value (for a randomly selected feature) when no feature is highlighted.

Results

The model predicted that reducing the cost of considering
a feature would increase the amount that people consider it.
Indeed, as shown in Figure 13A, participants revealed an av-
erage of 3.20 values of the highlighted feature on nudge tri-
als, compared with 1.89 values for control trials (two-sample
t-test: #(2458.7) = 16.57, p < .001).

In the model, revealing the value of a feature for more
options effectively increases the weight of the feature; this
leads it to choose options that have high value on that di-
mension. Figure 13B confirms this prediction. On nudge tri-
als, participants chose baskets with an average of 6.29 prizes
of the highlighted type, compared to a baseline of 5.89 on
control trials (#(2457.7) = 5.86,p < .001). Similarly, par-
ticipants chose the basket with the highest number of high-
lighted prizes significantly more often on nudge trials (67.4%
vs. 54.4%; y*(1) = 44, p < .001).

Discussion

Replicating earlier work, we found that reducing the cost
of a feature had a large impact on participants’ deliberation
strategies and choices (Sonnenberg et al., 2013). When the
cost of a prize value was reduced to one point, participants
revealed more values of that feature, chose options that had
higher values for the highlighted feature, and were more
likely to choose the option that maximized the highlighted
feature. Crucially, we showed how each of these effects can
result from a resource-rational strategy—“over-weighting”
the highlighted feature in one’s choices can be optimal when
individuals have limited time and attention.

While previous research has shown that nutritional labels
are only effective for those who notice or use them (Ollberd-
ing, Wolf, & Contento, 2011), our results suggest a com-
plementary causal structure—people who weight a feature
(i.e., sugar content) highly are more likely to use information
about that feature to make a decision. This means that while
labeling can reduce decision cost for those who value the
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highlighted feature, it may have a less pronounced impact on
actual choices—highlighting a feature is most beneficial to
those who would likely have already incorporated that fea-
ture into their decision. Those that do not weight the feature
highly, by contrast, are less likely to utilize, or benefit from,
the label. This suggests that studies using survey data—
where people may report gains from reduced deliberation
cost—may overestimate the effectiveness of labels relative
to those that measure actual consumption (see Elbel, Kersh,
Brescoll, and Dixon (2009); Elbel et al. (2013); Seward,
Block, and Chatterjee (2016); Sonnenberg et al. (2013)).

Constructing optimal nudges

Until now, we have focused on using our framework to un-
derstand and predict the effects of established nudges. Here,
we go further, and use resource-rational analysis to design
new nudges. Because the solution to the meta-level MDP
makes quantitative predictions about how a nudge will affect
the agent’s decision-making process and eventual choice, we
can define an objective function that takes as input a deci-
sion problem and a candidate nudge and returns a scalar in-
dicating how desirable the agent’s behavior is expected to
be under the modified choice architecture. We can then use
an optimization algorithm to automatically identify the best
possible nudge of a given class for a given problem.

The proposed method for constructing optimal nudges
consists of five steps:

1. Model a decision problem as a meta-level MDP, M.
2. Specify a space of possible nudges as a set of possible

modified meta-level MDPs, M.

3. Specify the goal of the nudge with an objective func-
tion g such that g(M, s) specifies how desirable the
decision maker’s behavior will be given the modified
meta-level MDP M if the true state of the world is s.

4. Specify the choice architect’s knowledge about the
world as a distribution over possible states, bycp.

5. Identify the optimal nudge as the modification that
maximizes the expected value of the objective func-
tion, given the architect’s beliefs:

M* = argmax E [g(M, s) | s~ bamh] (14)
MeM

Here, we illustrate this method in the context of multi-
attribute choice.

Step 1: Meta-level MDP

The first step in our method for constructing optimal
nudges is to model the decision-making process in the target
domain as a meta-level MDP. We have already completed
this step for multi-attribute choice as part of our analysis of
existing nudges.

Step 2: Space of nudges

After modeling a target decision-making problem as a
meta-level MDP, we next specify the space of possible
nudges one could apply as a set of modified meta-level
MDPs. We consider two classes of modifications—those that
change the agent’s prior beliefs, and those that highlight in-
formation.

Changing the agent’s prior beliefs corresponds to modi-
fying the initial belief state, byp. We have already seen two
specific examples of this: we modeled the effect of defaults
by increasing the prior mean for all features of the default
option, and we modeled the effect of suggestions by imme-
diately revealing the suggested option’s best feature (setting
the prior to a delta distribution on that value). Here, we
limit our attention to modifications of the latter type, i.e.,
those that correspond to immediately revealing the values
of some features. However, rather than using a fixed rule
(e.g., always revealing the best feature of a specific option),
we instead allow for an arbitrary selection of feature values
to reveal, with a constraint on the total number of revealed
values. Concretely, we require that exactly three values are
revealed. Each candidate nudge is identified by a set of three
unique option-feature pairs {(a;, f1), (a2, f2), (as, f3)}. M is
then identical to M except that u,, r = X4, 7 and o, 5 = 0 for
ie{l,2,3}.

Highlighting information corresponds to changing the
meta-level reward function. We assume that only the costs
can be modified, as the termination reward corresponds to
the value of the chosen option. In the most general form, we
could specify a unique reduction for every possible compu-
tation. However, this would result in a very large space of
possible nudges. To create a more tractable space to opti-
mize over, we apply the constraint that the cost is reduced by
a fixed amount, 9, for exactly three feature values. Thus,
as before, a nudge is identified by a set of three unique
option-feature pairs {(a;, f1), (a2, f>), (a3, f3)}, modifying M
With Fpeta(D, €, 15 S) = —(Ag,p — 0) fori € {1,2,3}.

Step 3: Objective function

How should we select among the many possible nudges
that we formalized in the previous step? Ideally, we would
implement the nudge that best accomplishes our goals. But
in order to specify which nudge best accomplishes our goals,
we must first specify what exactly our goals are. In step 3,
we make the goal of a nudge mathematically precise in the
form of an objective function.

There are many types of goals a nudge might have. For
example, many nudges aim to maximize the probability that
people take a certain action, e.g., recycling or registering to
become an organ donor. This kind of goal can be formalized
as maximizing the probability of the decision maker choos-



24 CALLAWAY, HARDY, GRIFFITHS

ing a specific action,
Saction(M, 530) = E la*(br) =a|M,s], 5)

where the expectation is taken with respect to the belief state
of the decision maker when they make a choice, br. Al-
though the distribution over by depends on M and s in com-
plex ways, reducing the cost of a computation will generally
make the agent more likely to execute it. Thus, this objective
function will select modifications that make it inexpensive
to consider features that make the desired action, a, appear
desirable or make competing actions seem undesirable.

Other nudges, such as suggestions from digital recom-
mendation systems, aim not to make people choose a spe-
cific option, but rather to improve the overall quality of their
decisions. We can model this kind of goal as maximizing the
expected utility of the decision maker’s choice,

Suility (M, 5) =E |utility(s,a*(br)) | M.s].  (16)
T

Finally, a choice architect might want to not only encour-
age people to make better decisions, but also to make it eas-
ier to make those decisions. We can formalize this goal as
maximizing the cumulative meta-level reward, which cap-
tures both decision quality and computational cost,

T

gmeta(M, 5) = LFT [Z r(b;, cy)

t=1

M, s}. (17)

Here, the expectation is taken over all possible sequences of
computations the agent could execute. This quantity is also
called the meta-level return, and it is the quantity that the op-
timal meta-level policy maximizes. We chose this objective
for the experiments presented below.

Step 4: Architect belief

As formalized in the previous step, the desirability of a
nudge depends on the true state of the world. The choice
architect will typically know something about that state, ide-
ally information that individual agents don’t have direct ac-
cess to (for example, the average annual out-of-pocket costs
for a given insurance policy). At the same time, the agent
may have access to information that the architect lacks (for
example, their own risk preferences). We thus specify the
choice architect’s knowledge of the world as a distribution
over world states, by, that may differ from the agent’s ini-
tial belief.

For our experiments, we will assume that the architect has
perfect knowledge of the feature values , but does not know
the agent’s preference weights. We do assume, however, that
the architect knows the distribution from which w is drawn.
In our experiments, this is a uniform distribution over all pos-
sible integer weights that sum to thirty. We thus marginalize

over this distribution when computing the expected value of
a nudge in Equation 14. Because there are a huge number of
possible weights, we approximate the expectation with 1000
Monte Carlo samples.

Step 5: Optimization

Given a model of a decision-making process (step 1), a
space of nudges (step 2), an objective function specifying the
goal of the nudge (step 3), and a belief about the true state
of the world (step 4), the final step is to identify the nudge
that maximizes the objective function. When the number of
possible nudges is relatively small, this can be achieved by
exhaustive enumeration. However, to take full advantage of
the flexibility of our approach, we must be able to specify
very large spaces of nudges. To show that the method is
robust to the use of imperfect optimization algorithms, we
employ a simple hill climbing procedure. Recall that both
spaces of nudges we consider correspond to selecting a set of
three cells in the payoff matrix (to either immediately reveal
or to reduce the cost of measuring). We begin by consider-
ing all the nudges in which only a single cell is included in
the set, selecting the cell that maximizes the objective func-
tion (breaking ties randomly). We then commit to including
this cell in the set, and repeat the process with the next cell,
choosing the one that results in the best performance when
added to the set with the first selected cell. Finally, we repeat
the process once more to select the third cell. We emphasize
that this procedure is not guaranteed to find the truly optimal
nudge; however, this will only weaken our results. Identify-
ing better tools to optimize over less-constrained spaces of
nudges is an important direction for future work.

Experiment 4: Optimal nudging by modifying beliefs

We first apply our optimal nudging procedure to develop
nudges that directly modify a decision maker’s initial belief
state. In Mouselab, this corresponds to revealing a set of
feature values at the beginning of a trial. To demonstrate
the value of our approach over and above simply making
information more accessible, we compare optimal nudges
against two baselines: a weak baseline in which features are
revealed randomly, and a strong baseline in which the most
extreme feature values are revealed (for a similar procedure,
see Cioffi, Levitsky, Pacanowski, & Bertz, 2015).

Methods

We tested the efficacy of optimal belief-modifying nudges
in Mouselab, but with some prize values revealed immedi-
ately. All problems had five options and five features, with
prize values generated following the same method as our
other experiments. On each problem, click costs were ini-
tially set to two. Before applying any nudge, we first selected
three random prize counts (i.e., table cells) to reveal. For
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Figure 14

Experiment 4: Problem construction procedure
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each nudge type, three additional prize counts were revealed.
These values were chosen randomly for random nudges, and
for extreme nudges, the three hidden values furthest from
5 were revealed (ties were broken randomly). For optimal
nudges, the three values were selected to maximize expected
meta-level return (bonus minus click cost; Equation 17), in-
tegrating over possible prize values (see Figure 14). Before
the experiment, we generated 1,000 Mouselab problems, and
constructed optimal, extreme, and random modifications for
each. To generate stimuli, we first sampled from the gen-
erated problems without replacement, and then selected a
nudge (optimal, extreme, or random) to determine the ini-
tially revealed prize counts.

Participants completed two practice trials and 30 test tri-
als. Participants made decisions on 10 test trials for each
modification type, with trial order randomized. Practice tri-
als were generated following a similar procedure, but always
had random modifications. Participants earned $1.30 for par-
ticipating in the study plus an average bonus of $1.66.

We recruited a preregistered sample size of 250 US-based
participants from Prolific. As in Experiment 1, this sample
size was selected by performing a power analysis on simu-
lated data, and participants were required to pass a compre-
hension test in their first three tries.

Because all trials had some values revealed immediately,
we did not exclude any of the 250 participants. However, we
did exclude practice trials, as planned. We thus conducted
our pre-registered tests on 7500 trials. As pre-registered, all
reported p values reflect one-tailed tests to confirm the rele-
vant model prediction.

Results

On average, participants earned 161.3 points on trials
with random nudges, 166.1 points on trials with the heuris-
tic nudge that revealed the most extreme values, and 169.5
points on trials with optimal nudges (Figure 15). A linear re-
gression with optimal nudge trials as the reference group re-
vealed that performance was significantly worse in the other
two groups (random: #(7497) = —10.55, p < .001; heuristic:
1(7497) = —4.42, p < .001). This overall performance bene-
fit of optimal nudges was supported by a significant increase
in decision quality (value of the chosen basket) and a sig-
nificant decrease in decision cost (clicking penalty). On av-
erage, participants chose baskets worth 172.8 points on trials
with optimal nudges, compared to 169.6 points with heuristic
nudges (#(7497) = —4.13, p < .001) and 165.0 points with
random nudges (#(7497) = —10.03, p < .001). At the same
time, they incurred a clicking penalty of 3.3 points on trials
with optimal nudges, compared to 3.5 points with heuristic
nudges (#(7497) = 1.69, p = .045) and 3.7 points with ran-
dom nudges (#(7497) = 3.05, p = .001).

Discussion

Our findings replicate previous work showing that not all
information highlighting nudges are equally effective at im-
proving choice (Lin et al., 2017). Indeed, we found that com-
pared to extreme and random modifications, nudges deter-
mined by our procedure increased participants’ total reward
and improved the quality of their choices. Furthermore, opti-
mal nudging made these choices easier to make—compared
to trials with extreme and random modifications, participants
spent significantly fewer points revealing prize counts on tri-
als with optimal nudges.

Our approach to constructing information highlighting
nudges has a number of additional advantages over other ap-
proaches. First, we explicitly specify the goal of the nudge
using an objective function. This can increase the trans-
parency of the nudge, provide a natural way to think about
new types of goals for nudges (e.g., making people’s deci-
sions easier without systematically changing their choices),
and allow individuals to have control over when, how, and
why they are nudged. Second, given a model of the decision-
making process and an objective, our method automatically
discovers an optimal nudge using computational optimiza-
tion techniques. This method has the potential to improve
information highlighting by identifying novel choice archi-
tectures, but can also reduce the human labor and cost in-
volved in designing these nudges. Along these lines, we be-
lieve that our optimal nudging procedure may be especially
useful for constructing choice architectures in digital envi-
ronments (Weinmann, Schneider, & Vom Brocke, 2016). Fi-
nally, by integrating over all possible preferences, our model
can be applied in heterogeneous populations or in domains
where people’s preferences are unknown or unstable (Bryan,
Tipton, & Yeager, 2021; Payne, Bettman, & Johnson, 1992;
Slovic, 1995). This can potentially address criticisms that
nudges constructed for the “average” decision maker can be
ineffective or even harmful for certain subgroups (Costa &
Kahn, 2013; Peer et al., 2020; Thunstrom, Gilbert, & Ritten,
2018).

Experiment 5: Optimal nudging by modifying costs

In many domains, it may be infeasible to directly manipu-
late people’s belief states. For example, in high-information
environments, individuals may focus on only one or two fea-
tures of a choice (Kalnikaité et al., 2013), making it difficult
for choice architects to deterministically manipulate atten-
tion. Indeed, food labeling interventions that aim to mod-
ify people’s beliefs states by providing additional informa-
tion are often unsuccessful (Lin et al., 2017). Instead, ef-
fective information highlighting nudges generally reduce the
cost of evaluating key pieces of information. By increasing
the chance that certain features are considered, these nudges
have an indirect and stochastic influence on people’s beliefs.
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Figure 15

Experiment 4: Model predictions and experimental results for optimal belief modification
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Here, we test our optimal nudging framework on infor-
mation highlighting nudges that reduce costs without mod-
ifying the initial belief state. In the Mouselab setup, this
corresponds to reducing the cost of certain prize counts at
the start of a trial, rather than fully revealing these values.
As in the previous experiment, we will compare optimal
cost-reductions to both random and extremity-based cost-
reductions.

Methods

All aspects of the design were identical to Experiment 4
with two exceptions. Click costs were initially set to three
points (rather than two points), and the cost for some cells
were reduced to one point (rather than being revealed en-
tirely).

We recruited a preregistered sample size of 250 US-based
participants from Prolific. Participants earned $1.30 for par-
ticipating in the study plus an average bonus of $1.58. To
maintain comparability with Experiment 4, we did not ex-
clude any of our 250 participants in our analyses. We did
exclude practice trials, as planned. We thus conducted our
pre-registered tests on 7500 trials. As pre-registered, all re-
ported p values reflect one-tailed tests to confirm the relevant
model prediction.

Results

As in the previous experiment, we found that our pro-
cedure helped participants choose more valuable baskets
with fewer clicks, resulting in higher total payoffs (Fig-
ure 16). On average, participants earned 162.1 points on
trials with optimal nudges, compared to 156.4 points with

heuristic nudges (#(7497) = —6.73, p < .001) and 154.6
points with random nudges (#(7497) = -8.87, p < .001).
They chose baskets worth 166.3 points on trials with opti-
mal nudges, compared to 161.1 points with heuristic nudges
(#(7497) = -6.22, p < .001) and 159.4 points with ran-
dom nudges (#(7497) = —8.18, p < .001). Finally, they
incurred a clicking penalty of 4.2 points on trials with opti-
mal nudges, compared to 4.7 points with heuristic nudges
(#(7497) = 2.35, p = .009) and 4.8 points with random
nudges (#(7497) = 3.20, p < .001).

Discussion

Similar to our findings on belief-state nudging, we found
that our optimal nudging procedure significantly improved
participants’ choices. Compared to random and extreme
modifications, participants chose better baskets and spent
fewer points revealing prize counts on trials with optimal
modifications. Crucially, these nudges were effective even
though they influenced participants’ beliefs only indirectly.
This setup likely better reflects modern real-world environ-
ments where individuals are often distracted, hurried, and in-
undated with information (Roetzel, 2019). Our results thus
highlight the flexibility of our framework—optimal nudges
can be constructed for any problem where the choice archi-
tect can specify a detailed model of deliberation and identify
a suitable space of possible nudges.

General Discussion

In this paper, we proposed a formal framework for model-
ing, constructing, and evaluating nudges. Our approach is
based on formulating human decision-making in terms of
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Figure 16

Experiment 5: Model predictions and experimental results for optimal cost reduction
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meta-level Markov decision processes. In this framework,
nudges change the initial belief state or sequence of delib-
erative actions taken by a decision-maker. This in turn in-
fluences their observed choices. While models have tradi-
tionally been developed separately for different nudges and
contexts (Chetty, 2015; Yeung, 2012), we are able to account
for the effects of several nudges in this framework.

We tested our framework in five large behavioral experi-
ments. In the first three experiments, we showed how default
options, suggested alternatives, and information highlight-
ing, could be formally modeled as changes to the meta-level
problem. In each case, this approach allowed us to derive
models that replicated findings from applied research, allow-
ing us to unify several verbal theories of specific nudges in a
common formal framework.

We then showed how our framework for modeling nudg-
ing can be used to automatically construct optimal nudges.
Our approach identified nudges that were significantly more
effective than those identified randomly or by a heuristic.
While we chose to optimize meta-level reward, or overall
well-being, this approach could easily be extended to opti-
mize other types of nudges, such as those that maximize the
probability of making a certain choice or those that reduce
deliberation cost without systematically changing behavior.

Furthermore, because our optimal nudging procedure is
automatic, our approach could be used to extend the con-
cept of personalized nudges (Mills, 2020; Peer et al., 2020;
Schoning, Matt, & Hess, 2019; Sunstein, 2013, 2014; Thaler
& Tucker, 2013; Yeung, 2017). Traditional approaches to
personalizing nudging use past choices or other user data to
estimate people’s preferences, circumstances, and needs. In
our framework, one could infer a user’s preference within

a single decision based on observable measures of their
decision-making operations (for example, mouse- or eye-
tracking). This observation could then be used to update
the choice architect’s beliefs about the user’s preferences
and make more effective nudges. On the other hand, when
data privacy is a concern (Mills, 2020), our approach can
still be applied without any user data by integrating over all
possible preferences as we did in our experiments. Simi-
larly, our approach could automate the construction of self-
nudges (Reijula & Hertwig, 2020), or choice architectures
that individuals manipulate and design to help improve their
own decisions. In our framework, self-nudges could be con-
structed by allowing individuals to specify the objective of
the nudge or the space of possible modifications. This trans-
parency and individual autonomy could potentially address
arguments that nudging can be manipulative and paternalis-
tic (Goodwin, 2012; Hausman & Welch, 2010; Wilkinson,
2013).

Limitations and future directions

Despite the advantages, our framework for modeling and
designing nudges puts substantial demands on the theorist or
choice architect. Specifically, they must provide a detailed
model of the computational architecture supporting the rele-
vant decision-making process. Here, we identify three spe-
cific challenges related to this issue which should be investi-
gated in future work.

The first, and likely most substantial challenge, lies in
modeling the cognitive aspects of the computational archi-
tecture. In the present work, we largely sidestepped this
challenge by using a process-tracing paradigm that exter-
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nalizes aspects of decision-making that typically occur in
people’s heads (i.e. evaluating options on different dimen-
sions). Applying our framework with more realistic cogni-
tive models—including components such as noisy evidence
accumulation (Callaway, Rangel, & Griffiths, 2021; Noguchi
& Stewart, 2018; Roe et al., 2001; Usher & McClelland,
2004) and direct comparison between options (Chen, Chang,
& Howes, 2021; Howes et al., 2016; Stewart, Chater, &
Brown, 2006)—is a critical direction for future research. In-
deed, our framework is agnostic to the cognitive model be-
ing used, and can generate predictions for any choice where
the deliberative process can be formalized as a series of
belief-updating deliberative actions. Applying such models
to nudging raises the interesting question of how to handle
free parameters. Although one could design nudges assum-
ing a distribution of these parameters across a population (as
we did for the weight vectors, w), one could also design
nudging systems that personalize themselves not only to a
decision maker’s preferences, but also to their idiosyncratic
cognitive quirks.

A second, related challenge, lies in modeling how the
external aspects of the computational architecture (i.e., the
choice architecture) are affected by different nudges. In some
cases, this may be relatively trivial (e.g. when modeling
early vs. late suggestions). Other cases, however, may be
less clear. Consider, for example, our model of defaults as
providing information about which option is best for most
people. This may work well in the context of choosing a
publicly-backed healthcare plan, but it may not work well in
the context of selecting an upgrade package for a flight (a
case when the choice architect and the decision maker have
highly divergent goals). Thus, even with our approach, mod-
els may still have to be adjusted for different domains and
contexts, limiting the potential for full automation. Neverthe-
less, our approach still greatly constrains the space of possi-
ble models, and provides a general framework for designing
and comparing different possible models of a given nudge.

A final challenge lies in characterizing how an individual’s
decision-making strategy will change in response to the al-
tered computational architecture. Consistent with resource-
rational analysis, we have here assumed that this adaptation
is rational. That is, we assume that people optimally solve
the modified meta-level problem. Our results suggest that
this assumption is sufficient to produce reasonably accurate
predictions about the effects of nudges. However, it is also
clear that people are not perfectly rational, even with respect
to their limited cognitive resources. Future work should ex-
tend our framework to account for more accurate models
of how people adapt their mental strategies to new meta-
level problems, drawing on research in cognitive architec-
tures (Anderson, Matessa, & Lebiere, 1997; Laird, Rosen-
bloom, & Newell, 1986), strategy selection (Erev & Bar-
ron, 2005; Lieder & Griffiths, 2017; Rieskamp & Otto, 2006;

Shrager & Siegler, 1998) and instance-based learning (Bug-
bee & Gonzalez, 2022; Gonzalez & Aggarwal, 2021).

Together, these challenges may significantly limit prac-
tical applications of our framework. However, even if the
choice architect cannot perfectly specify a model of the com-
putational architecture supporting the deliberation process,
our framework may be adequate to make useful, if not highly
accurate, predictions. At the very least, our approach identi-
fies novel predictions and nudges that researchers can test in
applied domains.

Conclusion

Nudges have already proven to be a highly effective mech-
anism for improving the decisions people make. In propos-
ing a formal framework for modeling the effects of choice
architecture, we hope to provide insight into how we can de-
sign even more effective nudges. In addition to providing a
computational tool for predicting the effects of nudges, this
framework forces us to confront important questions about
what the goals of nudging are. Together, these advances al-
low us to apply tools from artificial intelligence to automate
the design of nudges. We anticipate that this will make it
possible to increase the range of contexts in which nudges
can be used. More broadly, our approach of understanding
nudges as modifications to a decision-maker’s internal com-
putational environment may have implications for the larger
goal of designing interfaces that support human decision-
making.
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Appendix A
Metalevel MDPs

Metalevel MDPs extend the standard MDP formalism to
model the sequential decision problem posed by resource-
bounded computation. We define a meta-level MDP as
(S, A, rovjects B, C, Tretas Fmeta)-  The first three components
define the task-level problem. They have the same interpre-
tation as S, A and r in a standard MDP (we omit the tran-
sition function because we limit our analysis to one-shot de-
cisions). The latter four components define the meta-level
problem. We now define these four components in turn.

Beliefs. A belief state b € B captures the agent’s current
knowledge about the relevant state of the world. Formally, a
belief is a distribution states, 8 C A(S). Note that A(S) de-
notes the set of all possible distributions over S. Importantly,
contrary to a standard rational treatment of beliefs, the belief
states in a meta-level MDP do not include all the information
that is available to the DM. Instead, the belief state only con-
tains information that is immediately accessible, excluding,
for example, long-term memories and the number of calories
in every box of cereal on a shelf.

Computations. A computational operation ¢ € C is a
primitive operation afforded by the computational architec-
ture. Formally, it is a meta-level action that updates the belief
in much the same way as a regular action changes state. All
meta-level MDPs include the termination operation L, which
denotes that computation should be terminated and an action
should be selected based on the current belief state. We fur-
ther explain belief updating and termination in the following
secionts.

Transition function. The meta-level transition function
Tieta : BXCXS — A(B) describes how computation updates
beliefs. At each time step, the next belief is sampled from a
distribution that depends on the current belief, the computa-
tional operation that was just executed, and the true state of
the world, that is,

bis1 ~ Trea(by, C1, 5). (A1)

The transition function thus defines the core structure of the
computational architecture. Following previous work (Hay
et al., 2012; Matheson, 1968), we assume that the effect of
computation is to generate or reveal information about the
true state of the world, which is then integrated into the be-
lief state. Thus, in expectation, computation has the effect of



OPTIMAL NUDGING FOR COGNITIVELY BOUNDED AGENTS 35

making one’s beliefs more precise and accurate, although an
individual computation may yield misleading information.
Reward function. The meta-level reward function
Tmeta - BXCXS — R describes both the costs and benefits of
computation. For the former, ry.t, assigns a strictly negative
reward for all non-terminating computational operations,

Fmeta(D, ¢, §) = —cost(c) forc # L. (A2)

The cost of computation may include multiple factors, such
as energetic costs and opportunity costs.

Intuitively, the benefit of computation is that it allows one
to make better decisions. This is captured by the meta-level
reward for the termination operation L, defined as the true
utility of the external action that the DM would execute given
the current belief. We assume that the action is selected op-
timally. Thus,

Tmeta(b, L, 5) = robjecl(s’ a*(b)). (A3)

where

a’(b) = argmax E | ropject(5,@) | 5 ~ b] (A4)
In English, the meta-level reward for termination is the true
utility of the action® with maximal estimated utility.

Policy. The solution to a meta-level MDP takes the form
of apolicy 7 : 8 — A(C) that (perhaps stochastically) selects
which computation to perform in each possible belief state.
The optimal policy is the one that maximizes expected meta-
level return,

T

Z Tmeta(B1, Cr, )

t=1

7 = argmax E
s

~ 71} . (AS)

Unfortunately, computing an exact optimal policy is in-
tractable for problems of even moderate complexity. How-
ever, a greedy approximation to the optimal policy can
achieve reasonable performance, sufficient for a predictive
model of human behavior. We show how this greedy approx-
imation can be derived in the next appendix.

Appendix B
Meta-greedy policy
The basic intuition behind the meta-greedy policy of Rus-
sell and Wefald (1991) is to use one-step look-ahead in a
transformed belief MDP (Kaelbling, Littman, & Cassandra,
1998), where the true state is marginalized out.

Belief MDP

Given a meta-level MDP, (S, A, ropject> B, Cs Tmetas Fmeta)>
we can derive a new MDP in which the first three compo-
nents are integrated into the transition and reward functions.
The result is a standard MDP where states are beliefs and
actions are computations. To acomplish this, we must derive
versions of Tery and ryery that marginalize over the true state
of the world.

Marginal reward function.
tion is defined

The marginal reward func-

Fmeta(D, €) = INEb [Fmeta (D, 5, C)] . (B1)
For ¢ # L, rmewn(b, s, c) does not depend on s, and we have
simply

Fmeta(b, ) = —cost(c). (B2)

The reward for terminating, however, depends on the state

of the world; we must marginalize it out. Replacing
Fmeta(D, 5, L) with its definition, we have
Fmealb. 1) = E |ropjea(s. @’ ()] (B3)

= v]§b [robjecl(s, argmax v’l—gh [robject(s’s a)])} (B4)

a

= max B |rovjec(s. )] (BS)
(B5) follows from
f(argmax f(x)) = max f(x), (B6)

where f is E;.p [robject(s, ~)]. To derive the specific expres-
sion for the multi-attribute model, we replace ropjece With its
definition, giving us

max E
a (X,w)

Fmeta(D, L) =

LDowr xa,fl (B7)
7

= mfxzflwf’u“’f' (BY)

(B8) follows from E[x,, ¢[b]
tation (c.f. Equation 7).

Marginal transition function.
function is defined

= Uq,r and the linearity of expec-

The marginal transition

Trewa(b’ | b, c) = I::b [Tmeta(b, | b,c, S)] . (B9)
Unfortunately, it is not possible to simplify this expression in
the general case. Turning to the multi-attribute case, recall
that the transition function can be defined in generative form
(rather than with an explicit transition probability function)
as setting y1/, s = Xayand oy = 0. We want to create a
similar generative model to produce b’ given b. Because each
computation only updates the belief for one feature value, we
can leave the others as is. Furthermore, o/, does not depend
on state, and so we can leave it as 0. ThlS leaves u, I Here,

®For notational clarity, we have assumed a single optimal action.
When multiple actions have the same expected value, we assume
that ties are broken randomly; thus, a*(b) is more precisely a uni-
form distribution over all optimal actions, and re, (b, L, s) takes an
expectation over them.
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we must account for our uncertainty in the true feature value,
Xq,r- Because the computation sets p, f to X, y, we can simply
replace x, s in the full transition function with a distribution
capturing our belief about the value of x, . By definition,
Xq,f 1s distributed Normal(u, r, 074 r). The complete marginal
transition model is thus given by

o, =0
) (B10)
Hy r ~ Normal(ug,f, 07, f)

with all other variables left unchanged.

One-step lookahead

The meta-greedy policy selects computations under the
assumption that it will terminate computation on the next
time step (if it does not terminate on this time step). Given
this assumption, it selects the computation with maximal ex-
pected value. That is,

Toreedy b) = al‘gmax Qgreedy(b, ), (B11)

where Qgeeqy denotes the one-step lookahead value. For the
termination operation, there is no next step to look ahead to,
so the policy uses the true expected value,

Qgreedy(bs 1) = rmewa(d, 1) (B12)

We have already derived an analytic expression for the ex-
pected termination reward in (B8). For all non-terminating
computations, the the expected value marginalizes over pos-
sible outcomes of the computation (that is, the updated belief,
b'):

[Fimeta(b, L)] — cost(c)

Qgreedy(ba c) = E (B13)

b’ ~Teta(b,0)

We now define an analytic expression for (B13). We begin
by replacing ryera With (B8), giving us

—cost(c). (B14)

Qgreedy(b, c) = b mEm.(b,c) [mf.x ; wy /J;,f

To ease notation, we introduce the shorthand V,(a) =
2. Wy Hay to denote the expected value of action a given
belief b. The expectation then becomes

[max Vi (a) (B15)

E
b ~Tera(b,c)

Next, note that each computation only updates the expected
value of a single action. We can thus split up the maximiza-
tion into one part that depends on the updated belief and one
that does not,

; (B16)

E [max {Vb/ (a.), max Vb(a)}
b~ mcm(b’C) a#a.

where a, is the action inspected by computation c. Note that
Vi (a) = Vy(a) for a # a. because computations only affect
the expected value of one action. Thus, the internal max term
is a constant with respect to the expectation. Vj (a.), how-
ever, is a random variable. Specifically, it is Normally dis-
tributed with mean Vj,(a.) and standard deviation w,_ .0, /.,
with f, denoting the feature inspected by computation c. This
follows from

Vb/ (ac) = Z Welg. r + Wﬁﬂ;mﬁ. (B17)
f#fe

as well as E[aX+b] = b+a E[X] and Var[aX+b] = a® Var[X].
Intuitively, the expected value of the option should on aver-
age be the same after learning one of its features, and the size
of the update (that is, the variance of the new expected value)
depends on both the range of likely feature values, o, and
the amount the feature matters, w,_ .

Thus, (B16) is the expected maximum of a Normally dis-
tributed variable, Vy (a.), and a constant, max,z,, Vis(a). We
can thus apply

E[max{X,z}]=Pr[X <z]-z+ Pr[X > z])-E[X | X > z].

(B18)
substituting Vy (a.) for X and max,.,, Vs(a) for z. To write
this expression in a compact and intuitive form, let V, =
Vi (a.) be the value of the considered option after consid-
eration (a random variable), and let Vother = MaXqzq, Vi(a) be
the value of the competing “other” option (a constant). We
can then write

Qgreedy (b,¢) =Pr [V, < Vother] * Vother +
Pr [Vc > volher] -E [VC | Vc > Vother]

— cost(c).

(B19)

This expression involves the Normal CDF and the expecta-
tion of a truncated Normal, both of which are provided by
standard statistical libraries.

Appendix C
Results without exclusions
Here, we provide results for Experiments 1-3 without exclud-
ing participants who chose randomly (without clicking) on
more than half of control trials. In the main text, we report
the one case in which there is a difference in the significance
of a predicted effect (problem complexity in Experiment 2).
Here we report the full set of statistics.

Experiment 1

Participants chose the basket with the most prizes on
89.3% of trials when it was presented as the default op-
tion, compared with 51.2% on control trials. This difference
was significant, as revealed in a logistic regression predicting
default-chosen from nudge-present (z = 43.61, p < .001).
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In the 18.0% of trials on which our participant did not im-
mediately choose the default, they were still more likely to
choose it eventually (63.0% vs. 57.6%; z = 3.35, p < .001).

As predicted, we found significant positive interactions
with many-options (z = 6.77, p < .001) and many-features
(z = 1.65, p = .050), and a significant negative interaction
with idiosyncrasy z = —4.80, p < .001).

Participants achieved higher net earnings (payoff minus
click cost) when a default option was presented (174.01
points vs. 161.50 points; linear regression: #(12798) =
20.96, p < .001), but there was a significant negative inter-
action between nudge-present and idiosyncrasy (#(12796) =
—-3.06, p =.001).

Experiment 2

Participants chose suggested options significantly more
often than chance, as measured by a chi-square test of in-
dependence (38.0% vs. 16.7%, x*(1) = 2621, p < .001).

As stated in the main text, participants were not signifi-
cantly more likely to choose the suggested option in prob-

lems with five vs. two features, although the results trend in
that direction (z = 1.35, p = .089).

In line with our predictions, participants were more likely
to choose the suggested option when it was presented before
an initial choice (z = —10.75, p < .001). However, we did
not observe a significant interaction with problem complex-
ity (z = —=1.55, p =.061).

Experiment 3

Participants revealed an average of 2.13 values of the
highlighted feature on nudge trials, compared with 1.13
values for control trials (two-sample t-test: #(4009.8) =
16.42, p < .001).

Participants chose baskets with an average of 5.87 prizes
of the highlighted type, compared to a baseline of 5.52 on
control trials (#(4193.0) = 6.23, p < .001). Similarly, par-
ticipants chose the basket with the highest number of high-
lighted prizes significantly more often (53.3% vs. 44.2%;
x*(1) =35, p <.001).
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Figure C1

Experiment 1 results without exclusions
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Experiment 2 results without exclusions
c Model Human
O 0.51 1
S
7]
& 041 :
S o] Features
) 0.31 4 eal
Q 2
(2]
© 0.2 k
O fF-----m - b - - - )
ey
O 0.11 ]
S
g 00 . . L . .
Early Late Early Late

Suggestion Time

Note. See Figure 10 for details.



OPTIMAL NUDGING FOR COGNITIVELY BOUNDED AGENTS 39

Figure C3

Experiment 3 results without exclusions
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Table C1

Mean-squared error (MSE) values for key model predictions

MSE
Statistic With exclusions  Without exclusions
E1: Prob. choose default 0.0048 0.0093
El: Net earnings 42.78 120.20
E2: Prob. choose suggestion 0.0086 0.0184
E3: Highlight reveals 0.1164 1.4209
E3: Highlight value 0.0504 0.3313
E4: Total points NA 116.12
E5: Total points NA 216.92

Note. For each experiment, MSE values are computed by averaging the squared difference between the plotted model predictions and results
for the relevant statistic. Values are not weighted according to the amount of data used to estimate each point.



40 CALLAWAY, HARDY, GRIFFITHS

Figure C4

Experiment 1 results by trial
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Experiment 2 results by trial
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Figure C6

Experiment 3 results by trial
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Figure C7
Experiments 4 and 5 results by trial (no exclusions)
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